
The dimensions of electromotive force in terms of current $A$ are:
A) $\left[ {M{L^{ - 2}}{A^{ - 2}}} \right]$
B) $\left[ {M{L^2}{T^{ - 2}}{A^2}} \right]$
C) $\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]$
D) $\left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
Answer
195.9k+ views
Hint: To solve this question we should know about the base quantities which are used to form the dimensional formulae of any quantity. Also we should know how electromotive force is calculated i.e., the quantities involved in its calculation and their dimensional formulae.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Main Books 2026: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Algebra Important Concepts and Tips for Exam Preparation

Effect of Temperature on Resistance - Important Concepts and Tips for JEE

Half Life of Zero Order Reaction for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Wheatstone Bridge Explained: Principle, Working, and Uses
