
The critical angle of medium for specific wavelength, if the medium has relative permittivity $3$ and relative permeability $\dfrac{4}{3}$ for this wavelength, will be:
A) ${45^ \circ }$
B) ${30^ \circ }$
C) ${15^ \circ }$
D) ${60^ \circ }$
Answer
126.6k+ views
Hint: Use the formula of the refractive index of the medium and substitute the formula of velocity of light in air and medium. Substitute the angles, and the obtained refractive index of the medium in the snell’s law to know the critical angle of the medium.
Useful formula:
(1) The relative permittivity is given by
${ \in _r} = \dfrac{{{ \in _{}}}}{{{ \in _0}}}$
Where ${ \in _0}$ is the permittivity of free space and $ \in $ is the permittivity of the medium.
(2) The relative permeability of the medium is given by
${\mu _r} = \dfrac{{{\mu _{}}}}{{{\mu _0}}}$
Where $\mu $ is the permeability of the medium and ${\mu _0}$ is the permeability of the free space.
(3) The refractive index of the medium is given by
${\mu _2} = \dfrac{c}{v}$
Where $c$ is the velocity of the light in vacuum and $v$ is the velocity of the light in medium.
(4) The snell’s law states that
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
Where ${\mu _1}$ is the refractive index of free space and ${\mu _2}$ is the refractive index of the medium.
Complete step by step solution:
It is given that the
Relative permittivity of the medium, ${ \in _r} = 3$
The relative permeability of the medium, $\mu = \dfrac{4}{3}$
By taking the formula (3),
${\mu _2} = \dfrac{c}{v}$
Substituting the values of $c = \dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}$ and the $v = \dfrac{1}{{\sqrt {\mu { \in _r}} }}$ in the above formula,

${\mu _2} = \dfrac{{\dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}}}{{\dfrac{1}{{\sqrt {\mu { \in _r}} }}}}$
By simplifying the above equation, and also using the formula (1) and (2) in it, we get
${\mu _2} = \sqrt {{\mu _r}{ \in _r}} $
${\mu _2} = \sqrt {3 \times \dfrac{4}{3}} $
${\mu _2} = 2$
Using the formula (4),
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
The critical angle ${\theta _r} = {90^ \circ }$, so
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {90^ \circ }$
${\mu _2}\sin {\theta _i} = 2 \times \dfrac{1}{2}$
Substituting the value of the angles and the refractive index of the medium
$2\sin {\theta _i} = 1$
$\sin {\theta _i} = \dfrac{1}{2}$
Hence the value of the critical angle of the medium is ${30^ \circ }$.
Thus the option (B) is correct.
Note: The snell’s law has the relation, in which the ratio of the sine of the angles of incidence and the refraction is equal to the ratio of the refractive indexes. It is mainly used in fiber optics. Always remember that the critical angle of the free space is ${90^ \circ }$ .
Useful formula:
(1) The relative permittivity is given by
${ \in _r} = \dfrac{{{ \in _{}}}}{{{ \in _0}}}$
Where ${ \in _0}$ is the permittivity of free space and $ \in $ is the permittivity of the medium.
(2) The relative permeability of the medium is given by
${\mu _r} = \dfrac{{{\mu _{}}}}{{{\mu _0}}}$
Where $\mu $ is the permeability of the medium and ${\mu _0}$ is the permeability of the free space.
(3) The refractive index of the medium is given by
${\mu _2} = \dfrac{c}{v}$
Where $c$ is the velocity of the light in vacuum and $v$ is the velocity of the light in medium.
(4) The snell’s law states that
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
Where ${\mu _1}$ is the refractive index of free space and ${\mu _2}$ is the refractive index of the medium.
Complete step by step solution:
It is given that the
Relative permittivity of the medium, ${ \in _r} = 3$
The relative permeability of the medium, $\mu = \dfrac{4}{3}$
By taking the formula (3),
${\mu _2} = \dfrac{c}{v}$
Substituting the values of $c = \dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}$ and the $v = \dfrac{1}{{\sqrt {\mu { \in _r}} }}$ in the above formula,

${\mu _2} = \dfrac{{\dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}}}{{\dfrac{1}{{\sqrt {\mu { \in _r}} }}}}$
By simplifying the above equation, and also using the formula (1) and (2) in it, we get
${\mu _2} = \sqrt {{\mu _r}{ \in _r}} $
${\mu _2} = \sqrt {3 \times \dfrac{4}{3}} $
${\mu _2} = 2$
Using the formula (4),
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
The critical angle ${\theta _r} = {90^ \circ }$, so
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {90^ \circ }$
${\mu _2}\sin {\theta _i} = 2 \times \dfrac{1}{2}$
Substituting the value of the angles and the refractive index of the medium
$2\sin {\theta _i} = 1$
$\sin {\theta _i} = \dfrac{1}{2}$
Hence the value of the critical angle of the medium is ${30^ \circ }$.
Thus the option (B) is correct.
Note: The snell’s law has the relation, in which the ratio of the sine of the angles of incidence and the refraction is equal to the ratio of the refractive indexes. It is mainly used in fiber optics. Always remember that the critical angle of the free space is ${90^ \circ }$ .
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
