Answer
Verified
114.6k+ views
Hint: The critical angle of a medium is the angle such that if the incident angle of a ray of light going from a denser to a rarer medium is greater than the critical angle, the ray of light will be reflected back in the medium. It depends on the refractive index of the denser medium and can be determined from Snell’s law.
Formula used: In this solution, we will use the following formula:
Snell’s law ${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$ where ${\mu _1}$ is the refractive index of the first medium and ${\mu _2}$ , the second. ${\theta _1}$ and ${\theta _2}$ are the incident and the refractive index of the ray of light.
Complete step by step answer:
We’ve been given the critical angle of the glycerine-air medium as $43^\circ $. Let us start by finding the formula of critical angle from Snell’s law:
For the critical angle, the ray of light will be completely perpendicular to the normal. So, ${\theta _2} = 90^\circ $. As the second medium is air, so ${\mu _2} = 1$, we can write
$\sin {\theta _1} = \dfrac{1}{{{\mu _1}}}$
Or
$\theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{{\mu _1}}}} \right)$
$ \Rightarrow {\mu _1} = \dfrac{1}{{\sin {\theta _1}}}$
Since the critical angle for the glycerine-air medium as $43^\circ $, we can find the refractive index of the glycerine as
${\mu _1} = \dfrac{1}{{\sin 43^\circ }} = \dfrac{1}{{0.68}}$
Which gives us
${\mu _1} = 1.47$
Hence the refractive index of glycerine is ${\mu _1} = 1.47$
Note: The critical angle is only defined for a transfer from a denser to a rare medium. In this case, glycerine is the denser medium and air is the rare medium. The critical angle will depend only on the refractive of the denser medium if the rarer medium is air as we can consider the refractive index of air to be 1.
Formula used: In this solution, we will use the following formula:
Snell’s law ${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$ where ${\mu _1}$ is the refractive index of the first medium and ${\mu _2}$ , the second. ${\theta _1}$ and ${\theta _2}$ are the incident and the refractive index of the ray of light.
Complete step by step answer:
We’ve been given the critical angle of the glycerine-air medium as $43^\circ $. Let us start by finding the formula of critical angle from Snell’s law:
For the critical angle, the ray of light will be completely perpendicular to the normal. So, ${\theta _2} = 90^\circ $. As the second medium is air, so ${\mu _2} = 1$, we can write
$\sin {\theta _1} = \dfrac{1}{{{\mu _1}}}$
Or
$\theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{{\mu _1}}}} \right)$
$ \Rightarrow {\mu _1} = \dfrac{1}{{\sin {\theta _1}}}$
Since the critical angle for the glycerine-air medium as $43^\circ $, we can find the refractive index of the glycerine as
${\mu _1} = \dfrac{1}{{\sin 43^\circ }} = \dfrac{1}{{0.68}}$
Which gives us
${\mu _1} = 1.47$
Hence the refractive index of glycerine is ${\mu _1} = 1.47$
Note: The critical angle is only defined for a transfer from a denser to a rare medium. In this case, glycerine is the denser medium and air is the rare medium. The critical angle will depend only on the refractive of the denser medium if the rarer medium is air as we can consider the refractive index of air to be 1.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main