
The capacitance of a variable ratio capacitor can be charged from $50pF$ to $950pF$ by tuning the dial from 0 to ${180^ \circ }$. When the dial is set at ${180^ \circ }$ then the capacitor is connected to a 400V battery. When it is charged the capacitor is disconnected from the battery and the dial is turned to 0. (a) When the dial is set at 0 what is the potential difference across the capacitor? (b) How much work is required to turn the dial given that the friction is neglected?
Answer
131.7k+ views
Hint: - Convert the unit of capacitance to farad when the dial is set at 0 and ${180^ \circ }$ from $50pF$ to $950pF$. Find the energy stored in the capacitor when the dial is set at 0 and ${180^ \circ }$. Find the difference between the energies stored in the capacitor when the dial is set at 0 and ${180^ \circ }$ to find the net work done.
Complete Step by Step Solution: -
According to the question, it is given that –
Capacitance when the dial is at 0 $ = 50pF = 50 \times {10^{ - 12}}F$
Capacitance when the dial is at ${180^ \circ } = 950pF = 950 \times {10^{ - 12}}F$
Voltage of the battery $ = 400V$
Now, we know that, energy stored in the capacitor is given by –
$U = \dfrac{1}{2}C{V^2}$
where, $C$ is the capacitance and $V$ is the voltage
Now, when the dial is set to ${180^ \circ }$ then energy stored –
$
\Rightarrow U = \dfrac{1}{2} \times 950 \times {10^{ - 12}} \times {\left( {400} \right)^2} \\
\therefore U = 7.6 \times {10^{ - 5}}J \\
$
Using the formula of energy stored in the capacitor to find the charge across the capacitor –
$
\Rightarrow U = \dfrac{1}{2}C{V^2} \\
\Rightarrow U = \dfrac{{{Q^2}}}{{2C}} \\
$
$\therefore Q = \sqrt {2UC} $
Putting the value in the above formula, we get –
$
\Rightarrow Q = \sqrt {2 \times 7.6 \times {{10}^{ - 5}} \times 950 \times {{10}^{ - 12}}} \\
\therefore Q = 3.8 \times {10^{ - 3}}C \\
$
Now, when the dial is set at 0 then, using the formula of energy stored and putting the values in it, we get –
$
U = \dfrac{{{Q^2}}}{{2C}} \\
\Rightarrow U = \dfrac{1}{2} \times \dfrac{{{{\left( {3.8 \times {{10}^{ - 3}}} \right)}^2}}}{{50 \times {{10}^{ - 12}}}} \\
\therefore U = 1.444 \times {10^{ - 3}}J \\
$
To find the potential difference across the capacitor use the formula of energy stored we get –
$
\Rightarrow 1.444 \times {10^{ - 3}} = \dfrac{1}{2}C{V^2} \\
\Rightarrow V = \sqrt {\dfrac{{2 \times 1.444 \times {{10}^{ - 3}}}}{{50 \times {{10}^{ - 12}}}}} \\
\therefore V = 7600V \\
$
Hence, the potential difference across the capacitor is 7600V.
Work done can be calculated by finding the difference between the energy stored in the capacitor when the dial is set at 0 and ${180^ \circ }$ -
$
\Delta U = 1.444 \times {10^{ - 3}} - 7.6 \times {10^{ - 5}} \\
\Rightarrow \Delta U = 1.368 \times {10^{ - 3}}J \\
$
Note: - The energy stored in the capacitor is the electric potential energy and is related to the voltage and charge on the capacitor. If the capacitance of the conductor is $C$ then the relation between charge, capacitance and potential difference is given by –
$q = CV$
Complete Step by Step Solution: -
According to the question, it is given that –
Capacitance when the dial is at 0 $ = 50pF = 50 \times {10^{ - 12}}F$
Capacitance when the dial is at ${180^ \circ } = 950pF = 950 \times {10^{ - 12}}F$
Voltage of the battery $ = 400V$
Now, we know that, energy stored in the capacitor is given by –
$U = \dfrac{1}{2}C{V^2}$
where, $C$ is the capacitance and $V$ is the voltage
Now, when the dial is set to ${180^ \circ }$ then energy stored –
$
\Rightarrow U = \dfrac{1}{2} \times 950 \times {10^{ - 12}} \times {\left( {400} \right)^2} \\
\therefore U = 7.6 \times {10^{ - 5}}J \\
$
Using the formula of energy stored in the capacitor to find the charge across the capacitor –
$
\Rightarrow U = \dfrac{1}{2}C{V^2} \\
\Rightarrow U = \dfrac{{{Q^2}}}{{2C}} \\
$
$\therefore Q = \sqrt {2UC} $
Putting the value in the above formula, we get –
$
\Rightarrow Q = \sqrt {2 \times 7.6 \times {{10}^{ - 5}} \times 950 \times {{10}^{ - 12}}} \\
\therefore Q = 3.8 \times {10^{ - 3}}C \\
$
Now, when the dial is set at 0 then, using the formula of energy stored and putting the values in it, we get –
$
U = \dfrac{{{Q^2}}}{{2C}} \\
\Rightarrow U = \dfrac{1}{2} \times \dfrac{{{{\left( {3.8 \times {{10}^{ - 3}}} \right)}^2}}}{{50 \times {{10}^{ - 12}}}} \\
\therefore U = 1.444 \times {10^{ - 3}}J \\
$
To find the potential difference across the capacitor use the formula of energy stored we get –
$
\Rightarrow 1.444 \times {10^{ - 3}} = \dfrac{1}{2}C{V^2} \\
\Rightarrow V = \sqrt {\dfrac{{2 \times 1.444 \times {{10}^{ - 3}}}}{{50 \times {{10}^{ - 12}}}}} \\
\therefore V = 7600V \\
$
Hence, the potential difference across the capacitor is 7600V.
Work done can be calculated by finding the difference between the energy stored in the capacitor when the dial is set at 0 and ${180^ \circ }$ -
$
\Delta U = 1.444 \times {10^{ - 3}} - 7.6 \times {10^{ - 5}} \\
\Rightarrow \Delta U = 1.368 \times {10^{ - 3}}J \\
$
Note: - The energy stored in the capacitor is the electric potential energy and is related to the voltage and charge on the capacitor. If the capacitance of the conductor is $C$ then the relation between charge, capacitance and potential difference is given by –
$q = CV$
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
