Answer
Verified
114.9k+ views
Hint We know that capacitance is the ratio of the change in electric charge of a system to the corresponding change in its electric potential. There are two closely related notions of capacitance: self-capacitance and mutual capacitance. Any object that can be electrically charged exhibits self-capacitance. Capacitance is the ability of a component or circuit to collect and store energy in the form of an electrical charge. Capacitors are energy-storing devices available in many sizes and shapes. It doesn't depend on the EMF of the charging source or on the charges at the plates at some given instant. The charge stored remains the same and thus, one can infer that, the capacitance has increased.
Complete step by step answer From the data given in the question, we know that,
Capacitance when dial is $0^{\circ}=50$ pf $=50 \times 10^{-12} \mathrm{F}$
Capacitance when dial is ${{180}^{{}^\circ }}=850\text{pf}=850\times {{10}^{-12}}\text{F}$
Voltage of the battery = 400V
Energy stored in capacitor,
${{u}_{C}}=\dfrac{1}{2}C{{V}^{2}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
When dial in set at $180^{\circ}$
${{u}_{C}}=\dfrac{1}{2}\times 850\times {{10}^{-12}}\times {{(400)}^{2}}=6.8\times {{10}^{-5}}\text{J}$
${{U}_{c}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$Q=\sqrt{2{{U}_{C}}C}=\sqrt{2\times 6.8\times {{10}^{-5}}\times 850\times {{10}^{-12}}}$
$\Rightarrow Q=3.4\times {{10}^{-7}}\text{C}$
When dial is set at $0^{\circ}$
${{U}_{C}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$=\dfrac{1}{2}\times \dfrac{3\cdot 4\times {{10}^{-7}}\times 3\cdot 4\times {{10}^{-7}}}{50\times {{10}^{-12}}}=1.44\times {{10}^{-2}}\text{J}$
$1.44\times {{10}^{-2}}=\dfrac{1}{2}\text{C}{{\text{V}}^{2}}$
$\Rightarrow \text{V}=\sqrt{\dfrac{2\times 1.44\times {{10}^{-2}}}{50\times {{10}^{-12}}}}=24000\text{V}$
As no other option matches with the solution.
therefore, the correct answer is Option D.
Note: We can say that if the electric potential difference between two locations is 1 volt, then one Coulomb of charge will gain 1 joule of potential energy when moved between those two locations. Because electric potential difference is expressed in units of volts, it is sometimes referred to as the voltage. Voltmeters are used to measure the potential difference between two points.
There is a misconception about potential and voltage. Many of us think that both are the same. But voltage is not exactly potential; it is the measure of the electric potential difference between two points. When a voltage is connected across a wire, an electric field is produced in the wire. Metal wire is a conductor. Some electrons around the metal atoms are free to move from atom to atom. This causes a difference in energy across the component, which is known as an electrical potential difference.
Complete step by step answer From the data given in the question, we know that,
Capacitance when dial is $0^{\circ}=50$ pf $=50 \times 10^{-12} \mathrm{F}$
Capacitance when dial is ${{180}^{{}^\circ }}=850\text{pf}=850\times {{10}^{-12}}\text{F}$
Voltage of the battery = 400V
Energy stored in capacitor,
${{u}_{C}}=\dfrac{1}{2}C{{V}^{2}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
When dial in set at $180^{\circ}$
${{u}_{C}}=\dfrac{1}{2}\times 850\times {{10}^{-12}}\times {{(400)}^{2}}=6.8\times {{10}^{-5}}\text{J}$
${{U}_{c}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$Q=\sqrt{2{{U}_{C}}C}=\sqrt{2\times 6.8\times {{10}^{-5}}\times 850\times {{10}^{-12}}}$
$\Rightarrow Q=3.4\times {{10}^{-7}}\text{C}$
When dial is set at $0^{\circ}$
${{U}_{C}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$=\dfrac{1}{2}\times \dfrac{3\cdot 4\times {{10}^{-7}}\times 3\cdot 4\times {{10}^{-7}}}{50\times {{10}^{-12}}}=1.44\times {{10}^{-2}}\text{J}$
$1.44\times {{10}^{-2}}=\dfrac{1}{2}\text{C}{{\text{V}}^{2}}$
$\Rightarrow \text{V}=\sqrt{\dfrac{2\times 1.44\times {{10}^{-2}}}{50\times {{10}^{-12}}}}=24000\text{V}$
As no other option matches with the solution.
therefore, the correct answer is Option D.
Note: We can say that if the electric potential difference between two locations is 1 volt, then one Coulomb of charge will gain 1 joule of potential energy when moved between those two locations. Because electric potential difference is expressed in units of volts, it is sometimes referred to as the voltage. Voltmeters are used to measure the potential difference between two points.
There is a misconception about potential and voltage. Many of us think that both are the same. But voltage is not exactly potential; it is the measure of the electric potential difference between two points. When a voltage is connected across a wire, an electric field is produced in the wire. Metal wire is a conductor. Some electrons around the metal atoms are free to move from atom to atom. This causes a difference in energy across the component, which is known as an electrical potential difference.
Recently Updated Pages
JEE Colleges - Detailed Description of Top JEE Colleges
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Other Pages
Young's Double Slit Experiment Derivation
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions