Isothermal bulk modulus of an ideal gas at pressure ‘P’ is:
A) $P$.
B) $\gamma P$
C) $\dfrac{P}{2}$.
D) $\dfrac{P}{R}$
Answer
Verified
118.8k+ views
Hint: Bulk modulus is the measure of the compression of any substance. The bulk modulus is the ratio of infinite pressure increase to the volume of the substance. The reciprocal of the bulk modulus is known as compressibility.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs