Answer
Verified
114.6k+ views
Hint: In LCR circuit, if the resistor, inductor and capacitor is connected in series, then the voltmeter and ammeter readings can be determined by using the current and voltage formula. By using the voltage formula, the voltmeter reading can be determined, and by using the current formula the ammeter reading can be determined.
Formula used:
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Where, $V$ is the voltmeter reading, ${V_R}$ is the voltage across resistor, ${V_L}$ is the voltage across the inductor, ${V_C}$ is the voltage across the capacitor.
By ohm’s law,
$V = IR$
Where, $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
Given that,
Resistance, $R = 50\,\Omega $,
Voltage across inductor, ${V_L} = 400\,V$
Voltage across capacitor, ${V_C} = 400\,V$
Voltage across resistor, ${V_R} = 100\,V$
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} \,.................\left( 1 \right)$
On substituting the voltage across inductor, capacitor and resistor in the above equation (1), then
$V = \sqrt {{{\left( {100} \right)}^2} + {{\left( {400 - 400} \right)}^2}} $
By simplifying the terms, then the above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2} + 0} $
The above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2}} $
In the above equation the square and the square root get cancel each other, then the above equation is written as,
$V = 100\,V$
Thus, the above equation shows the voltage reading shown by the voltmeter.
Now,
By using the ohm’s law,
$V = IR\,............\left( 2 \right)$
We have to find the current, so keep the current in one side and the other terms in other side, then the above equation is written as,
$I = \dfrac{V}{R}$
Now, substituting the voltage value and the resistance value in the above equation, then the above equation is written as,
$I = \dfrac{{100}}{{50}}$
On dividing, then
$I = 2\,A$
Thus, the above equation shows the current reading shown by the ammeter.
Hence, the option (A) is the correct answer.
Note: The voltage across the inductor and capacitor is same, by subtracting these terms it will become zero, in equation (2), the voltage value substituted is the applied potential difference to the LCR circuit and it is mentioned in the circuit diagram. Then by substituting, the current reading shown by ammeter is determined.
Formula used:
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Where, $V$ is the voltmeter reading, ${V_R}$ is the voltage across resistor, ${V_L}$ is the voltage across the inductor, ${V_C}$ is the voltage across the capacitor.
By ohm’s law,
$V = IR$
Where, $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
Given that,
Resistance, $R = 50\,\Omega $,
Voltage across inductor, ${V_L} = 400\,V$
Voltage across capacitor, ${V_C} = 400\,V$
Voltage across resistor, ${V_R} = 100\,V$
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} \,.................\left( 1 \right)$
On substituting the voltage across inductor, capacitor and resistor in the above equation (1), then
$V = \sqrt {{{\left( {100} \right)}^2} + {{\left( {400 - 400} \right)}^2}} $
By simplifying the terms, then the above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2} + 0} $
The above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2}} $
In the above equation the square and the square root get cancel each other, then the above equation is written as,
$V = 100\,V$
Thus, the above equation shows the voltage reading shown by the voltmeter.
Now,
By using the ohm’s law,
$V = IR\,............\left( 2 \right)$
We have to find the current, so keep the current in one side and the other terms in other side, then the above equation is written as,
$I = \dfrac{V}{R}$
Now, substituting the voltage value and the resistance value in the above equation, then the above equation is written as,
$I = \dfrac{{100}}{{50}}$
On dividing, then
$I = 2\,A$
Thus, the above equation shows the current reading shown by the ammeter.
Hence, the option (A) is the correct answer.
Note: The voltage across the inductor and capacitor is same, by subtracting these terms it will become zero, in equation (2), the voltage value substituted is the applied potential difference to the LCR circuit and it is mentioned in the circuit diagram. Then by substituting, the current reading shown by ammeter is determined.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main