![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
In interference pattern, using two coherent sources of light, the fringe width is
A) Directly proportional to wavelength.
B) Inversely proportional to square of the wavelength.
C) Inversely proportional to wavelength.
D) Directly proportional to square of the wavelength.
Answer
124.8k+ views
Hint: Interference is the superimposition of two waves which forms a resultant with amplitude of more, less or the same one. Interference produced with different waves will always either come from same source or will have nearly same frequency
Important Formulae
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Complete step by step solution
In interference, we know Fringe is the separation between two consecutive bright or dark fringe
So $\begin{gathered}
{{\text{y}}_{\text{n}}}{\text{ = }}\dfrac{{{{n\lambda D}}}}{{\text{d}}}{\text{ and }}{{\text{y}}_{n + 1}} = \dfrac{{(n - 1)}}{d}\lambda D \\
So {\text{ }}{{\text{y}}_{{n}}} - {\text{ }}{{\text{y}}_{n + 1}} = {\text{fringe width}} \\
\end{gathered} $
$\begin{gathered}
= \dfrac{{\lambda {\text{D}}}}{d} \\
\\
\end{gathered} $
Fringe width is given by
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Thus, option A is correct.
Additional Information
Interference occurs in all types of waves including it is not only limited to surface water waves, gravity waves and light waves.
Notes: If the crest of one wave meets the trough of another waves, then the amplitude of the resultant wave is the difference in the amplitude of the two waves.
Important Formulae
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Complete step by step solution
In interference, we know Fringe is the separation between two consecutive bright or dark fringe
So $\begin{gathered}
{{\text{y}}_{\text{n}}}{\text{ = }}\dfrac{{{{n\lambda D}}}}{{\text{d}}}{\text{ and }}{{\text{y}}_{n + 1}} = \dfrac{{(n - 1)}}{d}\lambda D \\
So {\text{ }}{{\text{y}}_{{n}}} - {\text{ }}{{\text{y}}_{n + 1}} = {\text{fringe width}} \\
\end{gathered} $
$\begin{gathered}
= \dfrac{{\lambda {\text{D}}}}{d} \\
\\
\end{gathered} $
Fringe width is given by
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Thus, option A is correct.
Additional Information
Interference occurs in all types of waves including it is not only limited to surface water waves, gravity waves and light waves.
Notes: If the crest of one wave meets the trough of another waves, then the amplitude of the resultant wave is the difference in the amplitude of the two waves.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)