
In an L-C-R circuit the value of ${X_L}$ , ${X_C}$ and $R$ are $300\Omega $ , $200\Omega $ and $100\Omega $ respectively. The total impedance of the circuit will be
(A) $600\Omega $
(B) $200\Omega $
(C) $141\Omega $
(D) $310\Omega $
Answer
173.4k+ views
Hint: - At resonance the capacitive reactance and inductive reactance are equal. At above the resonant frequency the inductive reactance will be greater than the capacitive reactance. So the RLC circuit operating above resonant frequency behaves as a purely inductive circuit. The phase difference between the current and voltage will be equal in this circuit as the inductive circuit.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Recently Updated Pages
Complex Numbers and Quadratic Equations Mock Test 2025-26

Sets, Relations, and Functions Mock Test 2025-26

Faraday's Law - Formula & Example

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
