
In a common emitter transistor amplifier, the output resistance is \[500{\text{ k}}\Omega \] and the current gain \[\beta = 49\]. If the power gain of the amplifier is \[5 \times {10^6}\], the input resistance is
A. \[325{\text{ k}}\Omega \]
B. \[165{\text{ k}}\Omega \]
C. \[{\text{198 k}}\Omega \]
D. \[240{\text{ k}}\Omega \]
Answer
167.4k+ views
Hint:In this question, we need to find the input resistance. For this, we will use the formula of power gain for a common emitter transistor amplifier. After simplification, we will get the final result.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Difference Between Orbit and Orbital in Chemistry Explained (With Table & Diagram)

Difference Between Intensive and Extensive Properties in Chemistry

Difference Between Evaporation and Boiling: Key Concepts, Table & Examples

Difference Between CNG and LPG: Explained with Table, Properties & Uses

Difference Between Cell and Battery – Key Differences, Diagram, and Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Wheatstone Bridge for JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Ideal and Non-Ideal Solutions Raoult's Law - JEE
