In a common emitter transistor amplifier, the output resistance is \[500{\text{ k}}\Omega \] and the current gain \[\beta = 49\]. If the power gain of the amplifier is \[5 \times {10^6}\], the input resistance is
A. \[325{\text{ k}}\Omega \]
B. \[165{\text{ k}}\Omega \]
C. \[{\text{198 k}}\Omega \]
D. \[240{\text{ k}}\Omega \]
Answer
Verified
125.1k+ views
Hint:In this question, we need to find the input resistance. For this, we will use the formula of power gain for a common emitter transistor amplifier. After simplification, we will get the final result.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Main Login 2045: Step-by-Step Instructions and Details
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Ideal and Non-Ideal Solutions Raoult's Law - JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!