
If the angular momentum of an electron in an orbit is J then the kinetic energy of the electron in that orbit is,
A. \[\dfrac{{{J^2}}}{{2m{r^2}}} \\ \]
B. \[\dfrac{{Jv}}{r} \\ \]
C. \[\dfrac{{{J^2}}}{{2m}} \\ \]
D. \[\dfrac{{{J^2}}}{{2\pi }}\]
Answer
172.2k+ views
Hint:We deduce the linear speed of the electron in the orbit from the given expression for the angular momentum. When we get the linear speed we put in the expression for the kinetic energy to find the kinetic energy of the electron.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Enthalpy of Combustion with Examples for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Important Derivations for CBSE Class 12 Physics (Stepwise Solutions & PDF)
