
If \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\], then, \[a,b,c\] and \[d\]
A. are in A.P.
B. are in G.P.
C. are in H.P.
D. satisfy \[ab = cd\]
Answer
190.2k+ views
Hint: First, the left side of the given inequality is arranged to the form of the sum of the squares and then it is examined whether \[a,b,c,d\] are in A.P., G.P., H.P. or \[ab = cd\].
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2026

Carbon Dioxide Formula - Definition, Uses and FAQs

Absolute Pressure Formula - Explanation, and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Difference Between Solute and Solvent: JEE Main 2026

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2026: Exam Date, Syllabus, Eligibility, Application Form & Preparation Tips

NIT Cutoff Percentile for 2025

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Other Pages
NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles - 2025-26

NCERT Solutions For Class 10 Maths Chapter 13 Statistics - 2025-26

NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume - 2025-26

All Mensuration Formulas with Examples and Quick Revision

NCERT Solutions For Class 10 Maths Chapter 14 Probability - 2025-26

Complete List of Class 10 Maths Formulas (Chapterwise)
