
If \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\], then, \[a,b,c\] and \[d\]
A. are in A.P.
B. are in G.P.
C. are in H.P.
D. satisfy \[ab = cd\]
Answer
146.7k+ views
Hint: First, the left side of the given inequality is arranged to the form of the sum of the squares and then it is examined whether \[a,b,c,d\] are in A.P., G.P., H.P. or \[ab = cd\].
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Recently Updated Pages
Product to Sum Formulae - Important Concepts and Tips for JEE

Sum to Product Formulae - Important Concepts and Tips for JEE

Percentage Composition - Important Concepts and Tips for JEE

How to find Oxidation Number - Important Concepts for JEE

Derivative Examples – Meaning, Examples and Calculus Derivatives

Hybridization – Definition, Shape, Types and Important FAQs

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main Counselling 2025: Registration and Important Dates

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Response Sheet 2025 Released – Download Links, and Check Latest Updates

JEE Main 2025 Session 1 Result Out: Final Answer Key Released at jeemain.nta.nic.in

Other Pages
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

Mahavir Jayanti 2025 – Date, Significance, and Celebrations

Good Friday and Easter Celebration: Understanding the Significance of the Holy Week

Dr B. R. Ambedkar Short Biography
