Answer
Verified
109.5k+ views
Hint: First, the left side of the given inequality is arranged to the form of the sum of the squares and then it is examined whether \[a,b,c,d\] are in A.P., G.P., H.P. or \[ab = cd\].
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Formula Used:
If \[a,b,c,d\] are in A.P., then \[b - a = c - b = d - c\].
If \[a,b,c,d\] are in G.P., then \[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\].
If \[a,b,c,d\] are in H.P., then \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\] are in A.P.
Complete step by step solution:
We have been given that \[a,b,c,d\] and \[p\] are real numbers such that \[({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\]
Rearrange the left side of the given in-equation in the form of sum of the squares
\[\begin{array}{l}({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0\\ \Rightarrow {a^2}{p^2} + {b^2}{p^2} + {c^2}{p^2} - 2abp - 2bcp - 2cdp + {b^2} + {c^2} + {d^2} \le 0\\ \Rightarrow ({a^2}{p^2} - 2abp + {b^2}) + ({b^2}{p^2} - 2bcp + {c^2}) + ({c^2}{p^2} - 2cdp + + {d^2}) \le 0\\ \Rightarrow {(ap - b)^2} + {(bp - c)^2} + {(cp - d)^2} \le 0\end{array}\]
We know that the square of a real number can never be negative.
Since, \[a,b,c,d\] and \[p\] are real numbers and the basic mathematical operations i.e. addition, subtraction, multiplication and division on real numbers also results in real numbers, \[(ap - b),(bp - c),(cp - d)\] are also real numbers and their squares can not be negative.
Thus equating the squares to zero, we have
\[\begin{array}{l}{(ap - b)^2} = 0\\ \Rightarrow ap - b = 0\\ \Rightarrow ap = b\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{a}{b}\] ………………………equation (1)
Similarly,
\[\begin{array}{l}{(bp - c)^2} = 0\\ \Rightarrow bp - c = 0\\ \Rightarrow bp = c\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{c}{b}\] ………………………equation (2)
And also
\[\begin{array}{l}{(cp - d)^2} = 0\\ \Rightarrow cp - d = 0\\ \Rightarrow cp = d\end{array}\]
Further solving
\[ \Rightarrow p = \dfrac{d}{c}\] ………………………equation (3)
From equation (1), (2) and (3) it is clear that
\[\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}\] , which implies that \[a,b,c,d\] are in G.P. as the numbers in the sequence have a common ratio.
Option ‘B’ is correct
Note: From the given that, the relation between \[a,b,c,d\] is established. If the four numbers have a common ratio, then they will be in G.P., but, if the four numbers have a common difference, then they will be in A.P.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
If abcd and p are real numbers such that a2 + b2 + class 10 maths JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Syllabus 2025 (Updated)
JEE Main Previous Year Question Paper with Answer Keys and Solutions
JEE Main Physics Syllabus 2025 - Complete Topic-Wise Guide
JEE Main Chemistry Syllabus 2025 (Updated)
JEE Main Maths Syllabus 2025 (Updated)
Other Pages
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles
NCERT Solutions for Class 10 Maths Chapter 13 Statistics
NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume
NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability
Statistics Class 10 Notes CBSE Maths Chapter 13 (Free PDF Download)
Areas Related to Circles Class 10 Notes CBSE Maths Chapter 11 (Free PDF Download)