![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Given the Boltzmann’s constant, \[{k_B} = 1.38 \times {10^{ - 23}}{\text{ J/K}}\] , what will be the average translational kinetic energy of hydrogen gas molecules at NTP?
A. $0.186 \times {10^{ - 20}}{\text{ Joule}}$
B. $0.372 \times {10^{ - 20}}{\text{ Joule}}$
C. $0.56 \times {10^{ - 20}}{\text{ Joule}}$
D. $5.6 \times {10^{ - 20}}{\text{ Joule}}$
Answer
126.6k+ views
Hint: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ . This average kinetic energy is directly proportional to the absolute temperature of the gas molecules. .
Formula used:
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$
Complete answer:
In the above question, we have to calculate the average Kinetic Energy of the gas molecules at NTP, that is, Normal temperature and pressure.
Thus, $T = 273{\text{ K}}$ .
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$ … (1)
Here, $T$ is the absolute temperature and
${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ .
Substituting the value of temperature in equation (1) to calculate the value of the average translational kinetic energy,
$K.E. = \dfrac{3}{2}(1.38 \times {10^{ - 23}})(273) = 0.56 \times {10^{ - 20}}{\text{ J}}$
Hence, the average translational kinetic energy of hydrogen gas molecules at NYP is $0.56 \times {10^{ - 20}}{\text{ J}}$ .
Thus, the correct option is C.
Note: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant. It is important to note that this average kinetic energy is dependent on temperature as it is directly proportional to it.
Formula used:
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$
Complete answer:
In the above question, we have to calculate the average Kinetic Energy of the gas molecules at NTP, that is, Normal temperature and pressure.
Thus, $T = 273{\text{ K}}$ .
Average kinetic energy of gas molecules is given by:
$K.E. = \dfrac{3}{2}{k_B}T$ … (1)
Here, $T$ is the absolute temperature and
${k_B}$ is Boltzmann’s constant having a value of $1.38 \times {10^{ - 23}}{\text{ J/K}}$ .
Substituting the value of temperature in equation (1) to calculate the value of the average translational kinetic energy,
$K.E. = \dfrac{3}{2}(1.38 \times {10^{ - 23}})(273) = 0.56 \times {10^{ - 20}}{\text{ J}}$
Hence, the average translational kinetic energy of hydrogen gas molecules at NYP is $0.56 \times {10^{ - 20}}{\text{ J}}$ .
Thus, the correct option is C.
Note: Average kinetic energy of gas molecules is given by $K.E. = \dfrac{3}{2}{k_B}T$ , where ${k_B}$ is Boltzmann’s constant. It is important to note that this average kinetic energy is dependent on temperature as it is directly proportional to it.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)