![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Define critical angle with reference to the total internal reflection. Calculate the critical angle for glass-air surface if a ray of light which is incident in air on the glass surface is deviated through ${15^ \circ }$, when angle of incidence is ${45^ \circ }$.
Answer
126.6k+ views
Hint: If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection.
Formula Used:
The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
Complete step by step answer:
If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection. The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$ (1)
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
![](https://www.vedantu.com/question-sets/2052827d-e7c5-4e64-8995-6634d179a8f05911008003716655380.png)
Given the angle of incidence is ${45^ \circ }$and the refracted ray is deviated by ${15^ \circ }$.
Observe the figure above.
This means the angle of refraction can be calculated as,
$
r = {45^ \circ } - {15^ \circ } \\
= {30^ \circ } \\
$
Substituting the value of $i$ and $r$ in equation (2)
We get,
Refractive index as
$
n = \dfrac{{\sin \,{{45}^ \circ }}}{{\sin \,{{30}^ \circ }}} \\
= \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}} \\
= \sqrt 2 \\
$
Now using this value in equation 1 we get
$
\sin \,{i_c} = \dfrac{1}{n} \\
= \dfrac{1}{{\sqrt 2 }} \\
$
We need to find the angle ${i_c}$ therefore,
$
{i_c} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} \\
= {45^ \circ } \\
$
Critical Angle for glass air interface is ${45^ \circ }$.
Note: It is important to note that in this question angle of deviation is given instead of angle of refraction, we need to subtract the deviation from angle of incidence to find the angle of refraction and only then use it in Snell's Law.
Formula Used:
The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
Complete step by step answer:
If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection. The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$ (1)
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
![](https://www.vedantu.com/question-sets/2052827d-e7c5-4e64-8995-6634d179a8f05911008003716655380.png)
Given the angle of incidence is ${45^ \circ }$and the refracted ray is deviated by ${15^ \circ }$.
Observe the figure above.
This means the angle of refraction can be calculated as,
$
r = {45^ \circ } - {15^ \circ } \\
= {30^ \circ } \\
$
Substituting the value of $i$ and $r$ in equation (2)
We get,
Refractive index as
$
n = \dfrac{{\sin \,{{45}^ \circ }}}{{\sin \,{{30}^ \circ }}} \\
= \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}} \\
= \sqrt 2 \\
$
Now using this value in equation 1 we get
$
\sin \,{i_c} = \dfrac{1}{n} \\
= \dfrac{1}{{\sqrt 2 }} \\
$
We need to find the angle ${i_c}$ therefore,
$
{i_c} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} \\
= {45^ \circ } \\
$
Critical Angle for glass air interface is ${45^ \circ }$.
Note: It is important to note that in this question angle of deviation is given instead of angle of refraction, we need to subtract the deviation from angle of incidence to find the angle of refraction and only then use it in Snell's Law.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)