
Calculate the value of $'g'$ on the surface of the earth. The mass of the earth is $6 \times {10^{24}}\,Kg$ and the radius of the earth is $6 \times {10^6}\,m$ . Gravitational constant is $6.67 \times {10^{ - 11}}\,N{m^2}K{g^{ - 2}}$ .
Answer
128.7k+ views
Hint Use the formula of the acceleration due to gravity and substitute the gravitational constant, mass of the earth and the radius of the earth in it. The simplification of it provides the answer for the acceleration due to gravity of the objects in the earth.
Useful formula:
The formula of the acceleration due to gravity is given by
$g = \dfrac{{GM}}{{{r^2}}}$
Where $g$ is the acceleration due to gravity, $G$ is the gravitational constant, $M$ is the mass of the earth and $r$ is the radius of the earth.
Complete step by step answer
It is given that the
The mass of the earth , $M = 6 \times {10^{24}}\,Kg$
radius of the earth, $r = 6 \times {10^6}\,m$
Gravitational constant, $G = 6.67 \times {10^{ - 11}}\,N{m^2}K{g^{ - 2}}$
Let us consider the formula of the acceleration due to gravity,
$g = \dfrac{{GM}}{{{r^2}}}$
Substitute the gravitational constant, mass of the earth and the radius of the earth in the above formula, we get
$g = \dfrac{{6.67 \times {{10}^{ - 11}}\, \times 6 \times {{10}^{24}}\,}}{{{{\left( {6 \times {{10}^6}\,} \right)}^2}}}$
By performing the various basic arithmetic operations, we get
$g = \dfrac{{6.67 \times {{10}^8}}}{{6 \times {{10}^6}}}$
By further simplification of the above equation, we get
$g = 9.8\,m{s^{ - 2}}$
Hence the acceleration due to gravity of the earth is obtained as the $9.8\,m{s^{ - 2}}$ .
Note The gravitational force of the earth is mainly due to the presence of the molten iron and the nickel in the inner core of the earth. It is constant at all the surface of the earth. As there is the gravitational force of the pull between the object on the earth and the earth, there is also an attraction between the two objects on the surface of the earth. The gravitational force of the moon is six times less than the gravitational force of the moon.
Useful formula:
The formula of the acceleration due to gravity is given by
$g = \dfrac{{GM}}{{{r^2}}}$
Where $g$ is the acceleration due to gravity, $G$ is the gravitational constant, $M$ is the mass of the earth and $r$ is the radius of the earth.
Complete step by step answer
It is given that the
The mass of the earth , $M = 6 \times {10^{24}}\,Kg$
radius of the earth, $r = 6 \times {10^6}\,m$
Gravitational constant, $G = 6.67 \times {10^{ - 11}}\,N{m^2}K{g^{ - 2}}$
Let us consider the formula of the acceleration due to gravity,
$g = \dfrac{{GM}}{{{r^2}}}$
Substitute the gravitational constant, mass of the earth and the radius of the earth in the above formula, we get
$g = \dfrac{{6.67 \times {{10}^{ - 11}}\, \times 6 \times {{10}^{24}}\,}}{{{{\left( {6 \times {{10}^6}\,} \right)}^2}}}$
By performing the various basic arithmetic operations, we get
$g = \dfrac{{6.67 \times {{10}^8}}}{{6 \times {{10}^6}}}$
By further simplification of the above equation, we get
$g = 9.8\,m{s^{ - 2}}$
Hence the acceleration due to gravity of the earth is obtained as the $9.8\,m{s^{ - 2}}$ .
Note The gravitational force of the earth is mainly due to the presence of the molten iron and the nickel in the inner core of the earth. It is constant at all the surface of the earth. As there is the gravitational force of the pull between the object on the earth and the earth, there is also an attraction between the two objects on the surface of the earth. The gravitational force of the moon is six times less than the gravitational force of the moon.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
