
Assertion: When a white light is passed through a lens, violet light is more diffracted than red light.
Reason: Focal length for red light is greater than violet.
A) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
B) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion.
C) Assertion is correct but Reason is incorrect.
D) Both Assertion and Reason are incorrect.
Answer
165.3k+ views
Hint: Think about the dependency of wavelength, focal length and refractive index with each other. Also compare the wavelength of red and violet light. In the spectrum of light, red with maximum wavelength and violet light has the minimum wavelength.
Complete step by step solution:
We know refractive index is related with wavelength by
$\mu \propto \dfrac{1}{\lambda }$
Since the wavelength of red is greater than that of violet, refractive index of violet light is more than that of red light.
Now, the refractive index and focal length are related by
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Thus the focal length increases when the refractive index decreases.
Deviation is the angle by which a refracted ray deviates from its original path before refraction. More deviation means that a ray is more refracted.
Also, deviation is related to refractive index as
$\delta = A\left( {\mu - 1} \right)$
Thus deviation is more for a greater refractive index.
Finally from the above equations we can tell that,
${\mu _V} > {\mu _R}$
${f_R} > {f_V}$
${\delta _V} > {\delta _R}$
Since, violet light has greater refractive index thus when a white light is passed through a lens, violet light is more diffracted than red light.
Also from the above deduced relations we get that,
Focal length for red light is greater than violet.
Hence, both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, Option (A) is correct.
Note: Write the correct relation between refractive index, focal length and deviation of violet light and red light. Also make sure that the reason is apt for the given assertion.
Complete step by step solution:
We know refractive index is related with wavelength by
$\mu \propto \dfrac{1}{\lambda }$
Since the wavelength of red is greater than that of violet, refractive index of violet light is more than that of red light.
Now, the refractive index and focal length are related by
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Thus the focal length increases when the refractive index decreases.
Deviation is the angle by which a refracted ray deviates from its original path before refraction. More deviation means that a ray is more refracted.
Also, deviation is related to refractive index as
$\delta = A\left( {\mu - 1} \right)$
Thus deviation is more for a greater refractive index.
Finally from the above equations we can tell that,
${\mu _V} > {\mu _R}$
${f_R} > {f_V}$
${\delta _V} > {\delta _R}$
Since, violet light has greater refractive index thus when a white light is passed through a lens, violet light is more diffracted than red light.
Also from the above deduced relations we get that,
Focal length for red light is greater than violet.
Hence, both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, Option (A) is correct.
Note: Write the correct relation between refractive index, focal length and deviation of violet light and red light. Also make sure that the reason is apt for the given assertion.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Wheatstone Bridge for JEE Main Physics 2025
