
 Assertion: Soft and hard X− rays differ in frequency as well as velocity.
Reason: The penetrating power of hard X−rays is more than the penetrating power of soft X−rays.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If the assertion is true but the reason is false.
D. If the assertion and reason both are false
E. If assertion is false but the reason is true  
Answer
202.8k+ views
 Hint: Hard X-rays have higher energy than soft X-rays, which have lower energies. The energy has an inverse relationship with wavelength and is directly proportional to frequency. Therefore, the wavelength is shorter and the frequency is higher when the energy is larger.
Formula used:
The relationship between the matching photon's energy and X-ray wavelength is,
$E = \dfrac{{hc}}{\lambda }$
Here, $c$ is the speed of light, $\lambda$ is the wavelength of X-ray and $h$ is Planck's constant.
Complete step by step solution:
The high energy electromagnetic spectrum includes X-rays. X-rays have a shorter wavelength than visible rays because they are more energetic (since energy is inversely proportional to wavelength). Many objects, including the body, are transparent to them. As a result, they are employed to produce images of bones and tissues. The relationship between the matching photon's energy and X-ray wavelength is:
$E = \dfrac{{hc}}{\lambda }$
Larger wavelength X-rays are referred to as soft X-rays, while those with lower wavelengths are known as hard X-rays. Comparatively speaking, soft X-rays are generated at a lower potential difference than hard X-rays. They have a wavelength of $4\mathop A\limits^ \circ $ or above. Additionally, they have lower frequencies, which means less energy. Low penetrating power is another classification for soft X-rays.
On the other hand, hard X-rays have wavelengths in the order of $1\mathop A\limits^ \circ $ are additionally linked to higher frequency, and hence, higher energy. Because of all these qualities, they have a great penetrating power. The only difference between soft and hard X-rays is frequency. However, both kinds of X move at the speed of light.
Hence option E is correct.
Note: Making the word "hard" synonymous with the word "more" will help students remember the distinction between hard and soft X-rays. Therefore, hard X-rays have higher energy. And once it is shown that they have greater energy, it will be obvious that the relationship between these two variables—wavelength and energy—is inverse. Thus, the wavelength will be shorter the higher the energy.
Formula used:
The relationship between the matching photon's energy and X-ray wavelength is,
$E = \dfrac{{hc}}{\lambda }$
Here, $c$ is the speed of light, $\lambda$ is the wavelength of X-ray and $h$ is Planck's constant.
Complete step by step solution:
The high energy electromagnetic spectrum includes X-rays. X-rays have a shorter wavelength than visible rays because they are more energetic (since energy is inversely proportional to wavelength). Many objects, including the body, are transparent to them. As a result, they are employed to produce images of bones and tissues. The relationship between the matching photon's energy and X-ray wavelength is:
$E = \dfrac{{hc}}{\lambda }$
Larger wavelength X-rays are referred to as soft X-rays, while those with lower wavelengths are known as hard X-rays. Comparatively speaking, soft X-rays are generated at a lower potential difference than hard X-rays. They have a wavelength of $4\mathop A\limits^ \circ $ or above. Additionally, they have lower frequencies, which means less energy. Low penetrating power is another classification for soft X-rays.
On the other hand, hard X-rays have wavelengths in the order of $1\mathop A\limits^ \circ $ are additionally linked to higher frequency, and hence, higher energy. Because of all these qualities, they have a great penetrating power. The only difference between soft and hard X-rays is frequency. However, both kinds of X move at the speed of light.
Hence option E is correct.
Note: Making the word "hard" synonymous with the word "more" will help students remember the distinction between hard and soft X-rays. Therefore, hard X-rays have higher energy. And once it is shown that they have greater energy, it will be obvious that the relationship between these two variables—wavelength and energy—is inverse. Thus, the wavelength will be shorter the higher the energy.
Recently Updated Pages
JEE Main 2026 Session 1 Form Correction Window – Edit Application Details Online

JEE Main Login 2026 - Step-by-Step Explanation

There are two loops A and B placed coaxially along class 12 physics JEE_Main

The average and RMS value of voltage for square waves class 12 physics JEE_Main

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

Electric Field Due to a Uniformly Charged Ring Explained

Elastic Collisions in One Dimension: Concepts, Derivation, and Examples

