
An AC voltage of angular frequency $\omega $ and fixed amplitude ${V_0}$ is connected in series with a capacitance $C$ and an electric bulb of resistance $R$ (inductance zero). When $\omega $ is increased:
(A) The bulb glows dimmer
(B) The bulb glows brighter.
(C) Total impedance of the circuit is unchanged.
(D) Total impedance of the circuit increases.
Answer
152.1k+ views
Hint: A bulb glows brighter when the power supplied to it is increased. The impedance of a circuit is defined as the overall opposition of the circuit to the current flow. It is a combined effect of resistance and capacitance.
Formula used
$Z = \sqrt {{R^2} + {X_C}^2} $
$P = {V_{rms}}{I_{rms}}\cos \phi $
Here, Z is the impedance of the circuit.
R is the resistance of the circuit.
${X_C}$ is the capacitive reactance in the circuit.
P is the power supplied to the bulb.
${V_{rms}}$ is the root mean square voltage.
${I_{rms}}$ is the root mean square current.
And $\phi $ is the phase angle.
Complete step by step solution:
In the given circuit, the total resistance R and the total capacitive reactance ${X_C}$ constitute the impedance of the circuit.
It is given by-
$I = \sqrt {{R^2} + {X_C}^2} $
The capacitive reactance is given by-
${X_C} = \dfrac{1}{{{\omega _C}}}$
Keeping this value in the formula,
$Z = \sqrt {{R^2} + {{\left( {\dfrac{1}{{{\omega _C}}}} \right)}^2}} $
$Z \propto \dfrac{1}{{{\omega _C}}}$
If the value of $\omega $ is increased, the impedance in the circuit decreases, thus option (C) and (D) are incorrect.
The brightness of a bulb is determined by the magnitude of power supplied to it,
It is given by-
$P = {V_{rms}}{I_{rms}}\cos \phi $
The cosine of phase angle can be given by-
$\cos \phi = \dfrac{R}{Z}$
The formula for power can be rewritten by substituting this value as,
$P = {V_{rms}}{I_{rms}}\dfrac{R}{Z}$
It is given that the Voltage remains constant in the circuit, R of a circuit is a constant value and thus the current supplied to it is also constant.
The only value that changes with the change in $\omega $ is the impedance of the circuit.
$P \propto \dfrac{1}{Z}$
Impedance decreases with the increase in $\omega $.
Thus, the power supplied to the bulb increases and the bulb glows brighter.
Therefore, option (B) is correct.
Note: The impedance of the circuit has two components, real and imaginary. The resistance of the circuit constitutes the real part of the impedance, while the imaginary part contains the reactance values of the inductive and capacitive behaviour of the circuit.
Formula used
$Z = \sqrt {{R^2} + {X_C}^2} $
$P = {V_{rms}}{I_{rms}}\cos \phi $
Here, Z is the impedance of the circuit.
R is the resistance of the circuit.
${X_C}$ is the capacitive reactance in the circuit.
P is the power supplied to the bulb.
${V_{rms}}$ is the root mean square voltage.
${I_{rms}}$ is the root mean square current.
And $\phi $ is the phase angle.
Complete step by step solution:
In the given circuit, the total resistance R and the total capacitive reactance ${X_C}$ constitute the impedance of the circuit.
It is given by-
$I = \sqrt {{R^2} + {X_C}^2} $
The capacitive reactance is given by-
${X_C} = \dfrac{1}{{{\omega _C}}}$
Keeping this value in the formula,
$Z = \sqrt {{R^2} + {{\left( {\dfrac{1}{{{\omega _C}}}} \right)}^2}} $
$Z \propto \dfrac{1}{{{\omega _C}}}$
If the value of $\omega $ is increased, the impedance in the circuit decreases, thus option (C) and (D) are incorrect.
The brightness of a bulb is determined by the magnitude of power supplied to it,
It is given by-
$P = {V_{rms}}{I_{rms}}\cos \phi $
The cosine of phase angle can be given by-
$\cos \phi = \dfrac{R}{Z}$
The formula for power can be rewritten by substituting this value as,
$P = {V_{rms}}{I_{rms}}\dfrac{R}{Z}$
It is given that the Voltage remains constant in the circuit, R of a circuit is a constant value and thus the current supplied to it is also constant.
The only value that changes with the change in $\omega $ is the impedance of the circuit.
$P \propto \dfrac{1}{Z}$
Impedance decreases with the increase in $\omega $.
Thus, the power supplied to the bulb increases and the bulb glows brighter.
Therefore, option (B) is correct.
Note: The impedance of the circuit has two components, real and imaginary. The resistance of the circuit constitutes the real part of the impedance, while the imaginary part contains the reactance values of the inductive and capacitive behaviour of the circuit.
Recently Updated Pages
Difference Between Mass and Weight

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE
