Answer
Verified
114.6k+ views
Hint:- The above problem can be solved using the formula that is derived from the kinetic energy of the proton, that is with the respect to the mass of the proton, acceleration of the proton due to the potential difference of a voltage and the charge of the proton.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Useful formula:
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Where, $q$ denotes the charge on the proton, $v$ denotes the voltage acts on the accelerated proton.
Complete step by step solution:
The data given in the problem are;
Mass of the proton, $m = 1.67 \times {10^{ - 27}}$.
Charge of the proton, $q = 1.6 \times {10^{ - 19}}\,\,C$.
Potential difference of voltage, \[V = {10^6}\,\,V\]
The Kinetic Energy of the accelerated proton is given;
$K.E. = qV$
Substitute the values of charge of the proton and the potential difference in the above Kinetic energy formula;
$K.E. = 1.6 \times {10^{ - 19}}\,\,C\, \times {10^6}\,\,V$
On equating the above equation, we get;
$K.E. = 1.6 \times {10^{ - 13}}\,\,J$
Therefore, the kinetic energy of the mass of a proton that is accelerated is given as $K.E. = 1.6 \times {10^{ - 13}}\,\,J$.
Hence the option (D), $K.E. = 1.6 \times {10^{ - 13}}\,\,J$ is the correct answer.
Note: In the above given problem in case proton, if the mass of the proton increases due the addition of two or more protons, then the potential differences to move the proton increases and thus the acceleration acting on the proton increases.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main