A planet is revolving around the sun in an elliptical orbit, its closest distance from sun is \[{r_{\min }}\], and farthest distance from sun is \[{r_{\max }}\]. If the orbital angular velocity of planet when it is nearest to sun is \[\omega \], then orbital angular velocity at the point when it is at the farthest distance of sun is
A) \[\omega \sqrt {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \]
B) \[\omega \sqrt {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \]
C) \[\omega {\left( {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \right)^2}\]
D) \[\omega {\left( {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \right)^2}\]
Answer
Verified
118.8k+ views
Hint: As there is no external torque so the angular momentum is conserved, that means \[L = \omega {r^2}\]is constant on all the path of elliptical orbit where is \[\omega \] angular velocity of the way and \[r\] is distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main