
A plane mirror 50 cm long, is hung on a vertical wall of a room, with its lower edge 50 cm above the ground. A man stands in front of the mirror at a distance 2 m away from the mirror. If his eyes are at a height 1.8 m above the ground, then the length (distance between the extreme points of the visible region perpendicular to the mirror) of the floor visible to him due to reflection from the mirror is 26x m. Find the value of x.
Answer
139.5k+ views
Hint:The concept that is going to be used in this problem is the law of reflection. According to this law, the angle of incidence is equal to the angle of reflection. This means that the angle at which a light ray strikes a surface is equal to the angle at which it reflects off of the surface.To solve the problem, we can use the given information about the dimensions of the mirror and the distance between the man and the mirror, as well as the man's height. We can use this information to calculate the angles of incidence and reflection, as well as the lengths of the visible region.
Complete step by step solution:
Let’s try to make a drawing of the from the question and try to understand the situation

Given the upper extreme point of the mirror, $\overline{OA}$, reflects from the mirror and follows the path $\overline{OD}$, and the lower extreme point of the mirror, $\overline{OB}$, reflects and follows the path $\overline{BE}$.
We know that the angle of incidence is equal to the angle of reflection, so $\angle OAT = \angle FAT = \theta$ and $\angle OBF = \angle FBE = \beta$. Since $\overline{TA}$, $\overline{FB}$, and $\overline{DC}$ are parallel, $\angle BEC = \angle FBE$ and $\angle TAF = \angle ADC$.
Let $\overline{DC} = y$ and $\overline{NC} = x$. To find the length of floor visible by the man, we need to calculate $y - x$. We know that $\overline{AB} = \overline{CB} = 50 cm = 0.5 m$, so $\overline{AC} = \overline{AB} + \overline{BC} = 0.5 m + 0.5 m = 1 m$. Since $\overline{AC}$ and $\overline{TN}$ are parallel, we know that $\overline{AC} = \overline{TN} = 1 m$.
We can calculate $\overline{OT} = \overline{ON} - \overline{TN} = 1.8 m - 1 m = 0.8 m$.
Using trigonometry, in $\triangle OAT$, $\tan \theta = \overline{OT}/\overline{TA} = 0.8/2 = 0.4$. In $\triangle DAC$, $\tan \theta = \overline{AC}/\overline{DC}$, so $\overline{DC} = 5/2$.
To calculate $x$, in $\triangle OFB$, $\tan \beta = \overline{OF}/\overline{FB} = (\overline{ON} - \overline{FN})/\overline{FB} = (1.8 - 0.5)/2 = 1.3/2$. In $\triangle BAC$, $\tan \beta = \overline{BC}/\overline{EC}$, so $\overline{EC} = \overline{BC}/\tan \beta = 0.5 \times 2/13 = 1/13$.
Now we know that $x = 1/13$, so $y - x = 5/2 - 1/13 = 45/26$. The question asks for the value of $26x$, so $x = 45$.
Hence the correct answer is 45.
Notes: In case of reflection, angle of incident = angle of reflection. Always when solving this type of problem draw a clear picture of the question and then start thinking. Concept of alternate angles, supplementary angles etc. are also very important to solve this kind of problem.
Complete step by step solution:
Let’s try to make a drawing of the from the question and try to understand the situation

Given the upper extreme point of the mirror, $\overline{OA}$, reflects from the mirror and follows the path $\overline{OD}$, and the lower extreme point of the mirror, $\overline{OB}$, reflects and follows the path $\overline{BE}$.
We know that the angle of incidence is equal to the angle of reflection, so $\angle OAT = \angle FAT = \theta$ and $\angle OBF = \angle FBE = \beta$. Since $\overline{TA}$, $\overline{FB}$, and $\overline{DC}$ are parallel, $\angle BEC = \angle FBE$ and $\angle TAF = \angle ADC$.
Let $\overline{DC} = y$ and $\overline{NC} = x$. To find the length of floor visible by the man, we need to calculate $y - x$. We know that $\overline{AB} = \overline{CB} = 50 cm = 0.5 m$, so $\overline{AC} = \overline{AB} + \overline{BC} = 0.5 m + 0.5 m = 1 m$. Since $\overline{AC}$ and $\overline{TN}$ are parallel, we know that $\overline{AC} = \overline{TN} = 1 m$.
We can calculate $\overline{OT} = \overline{ON} - \overline{TN} = 1.8 m - 1 m = 0.8 m$.
Using trigonometry, in $\triangle OAT$, $\tan \theta = \overline{OT}/\overline{TA} = 0.8/2 = 0.4$. In $\triangle DAC$, $\tan \theta = \overline{AC}/\overline{DC}$, so $\overline{DC} = 5/2$.
To calculate $x$, in $\triangle OFB$, $\tan \beta = \overline{OF}/\overline{FB} = (\overline{ON} - \overline{FN})/\overline{FB} = (1.8 - 0.5)/2 = 1.3/2$. In $\triangle BAC$, $\tan \beta = \overline{BC}/\overline{EC}$, so $\overline{EC} = \overline{BC}/\tan \beta = 0.5 \times 2/13 = 1/13$.
Now we know that $x = 1/13$, so $y - x = 5/2 - 1/13 = 45/26$. The question asks for the value of $26x$, so $x = 45$.
Hence the correct answer is 45.
Notes: In case of reflection, angle of incident = angle of reflection. Always when solving this type of problem draw a clear picture of the question and then start thinking. Concept of alternate angles, supplementary angles etc. are also very important to solve this kind of problem.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A conducting loop carrying a current is placed in a class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electromagnetic Waves Chapter - Physics JEE Main

Collision - Important Concepts and Tips for JEE

The diffraction effect can be observed in left A right class 12 physics JEE_Main

A transformer is used to light a 100W and 110V lamp class 12 physics JEE_Main

The force between two short electric dipoles placed class 12 physics JEE_Main
