Answer
Verified
109.5k+ views
Hint:The concept that is going to be used in this problem is the law of reflection. According to this law, the angle of incidence is equal to the angle of reflection. This means that the angle at which a light ray strikes a surface is equal to the angle at which it reflects off of the surface.To solve the problem, we can use the given information about the dimensions of the mirror and the distance between the man and the mirror, as well as the man's height. We can use this information to calculate the angles of incidence and reflection, as well as the lengths of the visible region.
Complete step by step solution:
Let’s try to make a drawing of the from the question and try to understand the situation
Given the upper extreme point of the mirror, $\overline{OA}$, reflects from the mirror and follows the path $\overline{OD}$, and the lower extreme point of the mirror, $\overline{OB}$, reflects and follows the path $\overline{BE}$.
We know that the angle of incidence is equal to the angle of reflection, so $\angle OAT = \angle FAT = \theta$ and $\angle OBF = \angle FBE = \beta$. Since $\overline{TA}$, $\overline{FB}$, and $\overline{DC}$ are parallel, $\angle BEC = \angle FBE$ and $\angle TAF = \angle ADC$.
Let $\overline{DC} = y$ and $\overline{NC} = x$. To find the length of floor visible by the man, we need to calculate $y - x$. We know that $\overline{AB} = \overline{CB} = 50 cm = 0.5 m$, so $\overline{AC} = \overline{AB} + \overline{BC} = 0.5 m + 0.5 m = 1 m$. Since $\overline{AC}$ and $\overline{TN}$ are parallel, we know that $\overline{AC} = \overline{TN} = 1 m$.
We can calculate $\overline{OT} = \overline{ON} - \overline{TN} = 1.8 m - 1 m = 0.8 m$.
Using trigonometry, in $\triangle OAT$, $\tan \theta = \overline{OT}/\overline{TA} = 0.8/2 = 0.4$. In $\triangle DAC$, $\tan \theta = \overline{AC}/\overline{DC}$, so $\overline{DC} = 5/2$.
To calculate $x$, in $\triangle OFB$, $\tan \beta = \overline{OF}/\overline{FB} = (\overline{ON} - \overline{FN})/\overline{FB} = (1.8 - 0.5)/2 = 1.3/2$. In $\triangle BAC$, $\tan \beta = \overline{BC}/\overline{EC}$, so $\overline{EC} = \overline{BC}/\tan \beta = 0.5 \times 2/13 = 1/13$.
Now we know that $x = 1/13$, so $y - x = 5/2 - 1/13 = 45/26$. The question asks for the value of $26x$, so $x = 45$.
Hence the correct answer is 45.
Notes: In case of reflection, angle of incident = angle of reflection. Always when solving this type of problem draw a clear picture of the question and then start thinking. Concept of alternate angles, supplementary angles etc. are also very important to solve this kind of problem.
Complete step by step solution:
Let’s try to make a drawing of the from the question and try to understand the situation
Given the upper extreme point of the mirror, $\overline{OA}$, reflects from the mirror and follows the path $\overline{OD}$, and the lower extreme point of the mirror, $\overline{OB}$, reflects and follows the path $\overline{BE}$.
We know that the angle of incidence is equal to the angle of reflection, so $\angle OAT = \angle FAT = \theta$ and $\angle OBF = \angle FBE = \beta$. Since $\overline{TA}$, $\overline{FB}$, and $\overline{DC}$ are parallel, $\angle BEC = \angle FBE$ and $\angle TAF = \angle ADC$.
Let $\overline{DC} = y$ and $\overline{NC} = x$. To find the length of floor visible by the man, we need to calculate $y - x$. We know that $\overline{AB} = \overline{CB} = 50 cm = 0.5 m$, so $\overline{AC} = \overline{AB} + \overline{BC} = 0.5 m + 0.5 m = 1 m$. Since $\overline{AC}$ and $\overline{TN}$ are parallel, we know that $\overline{AC} = \overline{TN} = 1 m$.
We can calculate $\overline{OT} = \overline{ON} - \overline{TN} = 1.8 m - 1 m = 0.8 m$.
Using trigonometry, in $\triangle OAT$, $\tan \theta = \overline{OT}/\overline{TA} = 0.8/2 = 0.4$. In $\triangle DAC$, $\tan \theta = \overline{AC}/\overline{DC}$, so $\overline{DC} = 5/2$.
To calculate $x$, in $\triangle OFB$, $\tan \beta = \overline{OF}/\overline{FB} = (\overline{ON} - \overline{FN})/\overline{FB} = (1.8 - 0.5)/2 = 1.3/2$. In $\triangle BAC$, $\tan \beta = \overline{BC}/\overline{EC}$, so $\overline{EC} = \overline{BC}/\tan \beta = 0.5 \times 2/13 = 1/13$.
Now we know that $x = 1/13$, so $y - x = 5/2 - 1/13 = 45/26$. The question asks for the value of $26x$, so $x = 45$.
Hence the correct answer is 45.
Notes: In case of reflection, angle of incident = angle of reflection. Always when solving this type of problem draw a clear picture of the question and then start thinking. Concept of alternate angles, supplementary angles etc. are also very important to solve this kind of problem.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main