
A photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \]is passing through the vacuum. The effective mass and momentum of the photon are respectively?
A. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
B. \[5 \times {10^{ - 25}}kg,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
C. \[Zero,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
D. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 43}}kg - m{s^{ - 1}}\]
Answer
127.5k+ views
Hint: Before we start addressing the problem, we need to know about the De-Broglie wavelength. The wavelength which is associated with an object in relation to its momentum and mass is known as the De-Broglie wavelength. It is an important concept in studying quantum mechanics and it deals with the matter waves.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Ideal and Non-Ideal Solutions Raoult's Law - JEE
