
A photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \]is passing through the vacuum. The effective mass and momentum of the photon are respectively?
A. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
B. \[5 \times {10^{ - 25}}kg,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
C. \[Zero,1.5 \times {10^{ - 26}}kg - m{s^{ - 1}}\]
D. \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 43}}kg - m{s^{ - 1}}\]
Answer
163.5k+ views
Hint: Before we start addressing the problem, we need to know about the De-Broglie wavelength. The wavelength which is associated with an object in relation to its momentum and mass is known as the De-Broglie wavelength. It is an important concept in studying quantum mechanics and it deals with the matter waves.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Formula Used:
The formula for the De-Broglie wavelength is,
\[\lambda = \dfrac{h}{p}\]
Where, h is Planck’s constant and p is momentum.
Complete step by step solution:
Consider a photon of wavelength \[{\rm{4400}}\mathop {\rm{A}}\limits^{\rm{0}} \] that is passing through the vacuum. Then we need to find the effective mass and momentum of the photon. By the formula of De-Broglie wavelength, we can write,
\[\lambda = \dfrac{h}{{mv}}\]
Here, momentum \[p = mv\]
\[m = \dfrac{h}{{\lambda v}}\]
Now, substitute the value of Planck’s constant (h), velocity (v) and wavelength (\[\lambda \]) in the above equation, we get
\[m = \dfrac{{6.625 \times {{10}^{ - 34}}}}{{4400 \times {{10}^{ - 10}} \times 3 \times {{10}^8}}}\]
\[\Rightarrow v = 3 \times {10^8}\] (the speed of light in vacuum)
\[\Rightarrow m = 5 \times {10^{ - 36}}kg\]
Now, to find the momentum we have,
\[p = mv\]
\[\Rightarrow p = 5 \times {10^{ - 36}} \times 3 \times {10^8}\]
\[\therefore p = 1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\]
Therefore, the effective mass and momentum of the photon are \[5 \times {10^{ - 36}}kg,1.5 \times {10^{ - 27}}kg - m{s^{ - 1}}\].
Hence, option A is the correct answer.
Note:Wavelength is the distance between two crests or two troughs of the wave. It is a defining characteristic of a wave and it depends on the medium in which it is travelling. The wave changes its shape as it moves from one medium to another medium and the wavelength also changes. But the frequency does not change when the wave travels from one medium to another, that is it remains constant.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
