
A motorcyclist of mass $m$ is to negotiate a curve of radius $r$ with a speed $v$. The minimum value of the coefficient of friction so that this negotiation may take place safely is?
A. ${v^2}rg$
B. $\dfrac{{{v^2}}}{{gr}}$
C. $\dfrac{{gr}}{{{v^2}}}$
D. $\dfrac{g}{{{v^2}r}}$
Answer
140.1k+ views
Hint: Since there is a downward force (which equals the weight of the body) applied to a body. When a body takes a curve with radius $r$ there is a chance of slipping a body hence, to negotiate the slip the normal force acting opposite to the downward force must be balanced by the centrifugal force.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Recently Updated Pages
Difference Between Mass and Weight

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Kepler’s Laws of Planetary Motion - First, Second, Third Law and Solved Examples

JoSAA Counselling 2025: Important Dates, Eligibility Criteria, Cutoffs

JEE Main Physics Formulas 2025 PDF: FREE Download

JEE Main Physics Mock Test 2025

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Question Papers 2025

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Raoult's Law with Examples

Other Pages
CBSE Class 12 English Core Syllabus 2024-25: Updated Curriculum

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Board Exam Date Sheet Class 10 2025 (Released): Download Class 10th Exam Dates PDF

CBSE Class 10 Hindi Sample Papers 2024-25

CBSE Class 10 Hindi B Syllabus 2024-25: Updated Curriculum

CBSE Class 10 SST Syllabus 2024-25: Updated Curriculum
