A motorcyclist of mass $m$ is to negotiate a curve of radius $r$ with a speed $v$. The minimum value of the coefficient of friction so that this negotiation may take place safely is?
A. ${v^2}rg$
B. $\dfrac{{{v^2}}}{{gr}}$
C. $\dfrac{{gr}}{{{v^2}}}$
D. $\dfrac{g}{{{v^2}r}}$
Answer
Verified
118.8k+ views
Hint: Since there is a downward force (which equals the weight of the body) applied to a body. When a body takes a curve with radius $r$ there is a chance of slipping a body hence, to negotiate the slip the normal force acting opposite to the downward force must be balanced by the centrifugal force.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Recently Updated Pages
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
The main component of natural gas is A Carbon dioxide class 9 physics JEE_Main
Ohm is the SI unit of A Resistance B Capacitance C class 9 physics JEE_Main
A constant retarding force of 50N applied to a body class 9 physics JEE_Main
A bullet of mass 004 kg moving with a speed of 90 ms1 class 9 physics JEE_Main
Trending doubts
JEE Main 2025 Maths Online - FREE Mock Test Series
Learn Chemistry Normality Formula With Example for JEE Main 2025
Purely Resistive Inductive and Capacitive Circuits for JEE Main 2025 Physics
JEE Main Physics 2025: Self Inductance of A Solenoid
Area Formula For Quadrilateral
Magnetic Permeability
Other Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key
JEE Main 2025 Question Paper PDFs with Solutions Free Download
JEE Mains 2024 27 Jan Shift 1 Paper with Solutions [PDF]