
A magnet of magnetic moment \[M\] is situated with its axis along the direction of a magnetic field of strength\[B\]. The work done in rotating it by an angle of \[{180^0}\] will be:
A. \[ - MB\]
B. \[ + MB\]
C. \[ + 2MB\]
D. \[Zero\]
Answer
163.5k+ views
Hint:
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
