
A magnet of magnetic moment $M$ is rotated through ${{360}^{o}}$ in a magnetic field $H$. Work done will be
A.$0$
B.$2\,MH$
C.$MH$
D.$\pi MH$
Answer
163.8k+ views
Hint: When a magnet is placed in a magnetic field, it experiences a torque. If a magnet is rotated against the torque, work has to be done. Here the magnet is rotated through an angle ${{360}^{o}}$ , so by putting this angle value in the respective equation we can calculate the value of work done.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Formula used:
The total work done $W$through rotating this magnet from an angle ${{\theta }_{1}}\,\,to\,\,{{\theta }_{2}}$ is given by,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$
Where,
$M=$Magnetic moment
$H=$Magnetic field
Complete answer:
When a magnet with the magnetic moment $\overrightarrow{M}$, is placed in a magnetic field $\overrightarrow{H}$, it experiences a torque,$\overrightarrow{\tau }=\overrightarrow{M}\times \overrightarrow{H}$
Or,$\tau =MH\sin \theta $ [Since $\theta =$angle] …….(i)
Now, this torque tends to align parallel to the direction of the magnetic field but if this magnet is rotated against the torque, work is to be done.
Thus, work done,$W=\tau d\theta $
Putting the value $\tau $from equation (i) we get,
$W=MH\sin \theta \,\,d\theta $
The work done in turning the magnetic dipole through a small angle is,
$dW=\tau d\theta $
If the magnet is rotated from an angle ${{\theta }_{1}}\,to\,\,{{\theta }_{2}}$,
Total work done,
$\int{dW}=\int\limits_{{{\theta }_{1}}}^{{{\theta }_{2}}}{MH\sin \theta \,d\theta }$
Or,
$W=MH(-\cos \theta )_{{{\theta }_{1}}}^{{{\theta }_{2}}}$
Or,
$W=MH(\cos {{\theta }_{1}}-\cos {{\theta }_{2}})$ ……..(ii)
In this problem ${{\theta }_{1}}={{0}^{o}}$and ${{\theta }_{2}}={{360}^{o}}$. Putting these values in equation (ii),
$\therefore W=MH(\cos {{0}^{o}}-\cos {{360}^{o}})$
Or,$W=MH(1-1)=0$
Therefore work done is zero when the magnet is rotated through an angle ${{360}^{o}}$ in a magnetic field.
Thus, option (A) is correct.
Note: Torque is an influence that causes a change in the rotational motion of any object. To make any object about an axis by imparting torque on it. Generally, torque is a vector quantity which means it has both magnitude and direction. The S.I unit of torque is $N.m$or $kg\,{{m}^{2}}{{\sec }^{-2}}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
