Answer
Verified
114.9k+ views
Hint: Use the formula of conservation of linear momentum by taking external force is zero. State an equation of conservation of energy where initial energy is due to the compression of the spring and final energy due to the motion of the blocks. Calculate the velocity of the big block from these two conservation formulas.
Formula used:
From the momentum conservation law,
$m{v_1} = M{v_2}$ where, $m$ and $M$ are the masses of block-1 and block-2 respectively.
${v_1}$ and ${v_2}$ are the velocities of block-1 and block-2 respectively after losing the contact of the spring.
From the energy conservation law,
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
$k$ Is the spring constant and $x$ is the expansion due to the compression of the spring.
Complete step by step answer:
The two blocks of masses $m$ and $M$ are attached through a light spring of spring constant $k$ and expanded by the length $x$.
After losing the contact of the spring, block-1 is moving with a velocity ${v_1}$ and block-2 is moving with a velocity ${v_2}$.
The diagram is shown below,
According to the momentum for the conservation and we can write it as
$m{v_1} = M{v_2}$ [ $m$ and $M$ are the masses of block-1 and block-2 respectively.]
$ \Rightarrow {v_1} = \dfrac{{M{v_2}}}{m}...................(1)$
The initial energy is due the compression of the spring, hence ${E_1} = \dfrac{1}{2}k{x^2}$
$k$ is the spring constant and $x$ is the expansion due to the compression of the spring.
And, the final energy will be due to the motion of the blocks, hence ${E_2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
From the energy conservation law,
${E_1} = {E_2}$
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2.................(2)$
By putting the value of ${v_1}$ from eq $(1)$ in the eq. $(2)$ we get,
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{\left( {\dfrac{{M{v_2}}}{m}} \right)^2} + \dfrac{1}{2}M{v_2}^2$
$ \Rightarrow k{x^2} = \dfrac{{{M^2}{v_2}^2}}{m} + M{v_2}^2$
$ \Rightarrow M{v_2}^2\left( {\dfrac{M}{m} + 1} \right) = k{x^2}$
$ \Rightarrow M{v_2}^2\left( {\dfrac{{M + m}}{m}} \right) = k{x^2}$
$ \Rightarrow {v_2}^2M(M + m) = km{x^2}$
$ \Rightarrow {v_2}^2 = \dfrac{{km}}{{M(M + m)}}{x^2}$
$ \Rightarrow {v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
So, the velocity of the block-2 will be, ${v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
Hence the correct answer is in option $(A)$.
Note: We know that the force is the change of the linear momentum of the objects in a system. Since, there is o external force acting horizontally on the system consisting of two blocks and a spring, the linear momentum will be zero. Hence the equation be like, $m{v_1} - M{v_2} = 0$. This concept leads to the concept of conservation of linear momentum.
Formula used:
From the momentum conservation law,
$m{v_1} = M{v_2}$ where, $m$ and $M$ are the masses of block-1 and block-2 respectively.
${v_1}$ and ${v_2}$ are the velocities of block-1 and block-2 respectively after losing the contact of the spring.
From the energy conservation law,
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
$k$ Is the spring constant and $x$ is the expansion due to the compression of the spring.
Complete step by step answer:
The two blocks of masses $m$ and $M$ are attached through a light spring of spring constant $k$ and expanded by the length $x$.
After losing the contact of the spring, block-1 is moving with a velocity ${v_1}$ and block-2 is moving with a velocity ${v_2}$.
The diagram is shown below,
According to the momentum for the conservation and we can write it as
$m{v_1} = M{v_2}$ [ $m$ and $M$ are the masses of block-1 and block-2 respectively.]
$ \Rightarrow {v_1} = \dfrac{{M{v_2}}}{m}...................(1)$
The initial energy is due the compression of the spring, hence ${E_1} = \dfrac{1}{2}k{x^2}$
$k$ is the spring constant and $x$ is the expansion due to the compression of the spring.
And, the final energy will be due to the motion of the blocks, hence ${E_2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2$
From the energy conservation law,
${E_1} = {E_2}$
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}M{v_2}^2.................(2)$
By putting the value of ${v_1}$ from eq $(1)$ in the eq. $(2)$ we get,
$ \Rightarrow \dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{\left( {\dfrac{{M{v_2}}}{m}} \right)^2} + \dfrac{1}{2}M{v_2}^2$
$ \Rightarrow k{x^2} = \dfrac{{{M^2}{v_2}^2}}{m} + M{v_2}^2$
$ \Rightarrow M{v_2}^2\left( {\dfrac{M}{m} + 1} \right) = k{x^2}$
$ \Rightarrow M{v_2}^2\left( {\dfrac{{M + m}}{m}} \right) = k{x^2}$
$ \Rightarrow {v_2}^2M(M + m) = km{x^2}$
$ \Rightarrow {v_2}^2 = \dfrac{{km}}{{M(M + m)}}{x^2}$
$ \Rightarrow {v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
So, the velocity of the block-2 will be, ${v_2} = {\left[ {\dfrac{{km}}{{M(M + m)}}} \right]^{\dfrac{1}{2}}}x$
Hence the correct answer is in option $(A)$.
Note: We know that the force is the change of the linear momentum of the objects in a system. Since, there is o external force acting horizontally on the system consisting of two blocks and a spring, the linear momentum will be zero. Hence the equation be like, $m{v_1} - M{v_2} = 0$. This concept leads to the concept of conservation of linear momentum.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs