Answer
Verified
110.1k+ views
Hint:- The above problem can be solved using the formula derived from the object image and focal distance relationship formulas of the convex lens and the convex mirror of the same focal length. The formula for the focal length of the lens and the mirror is used.
Useful formula:
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
Where, the $d$ is the distance between the convex lens and convex mirror, $f$ is the focal length of the convex mirror.
Complete step by step solution:
The data given in the problem is;
Focal length of the convex lens is, ${f_1} = 20\,\,cm$.
Focal length of the convex mirror is, ${f_2} = 20\,\,cm$
Distance of the image placed from the image is, ${u_1} = 30\,\,cm$
At convex lens;
$\dfrac{1}{{{f_1}}} = \dfrac{1}{{{v_1}}} + \dfrac{1}{{{u_1}}}$
Substituting the value of focal length and the object distance from the lens
$
\dfrac{1}{{20}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{30}} \\
\dfrac{1}{{20}} - \dfrac{1}{{30}} = \dfrac{1}{{{d_i}}} \\
$
Where, ${d_i}$ denotes the distance of the image at convex lens.
\[\dfrac{1}{{{d_i}}} = \dfrac{1}{{60}}\]
At convex mirror:
$\dfrac{1}{{{f_2}}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{u_o}}}$
Substitutes the values of the focal length and the image distance;
$
\dfrac{1}{{20}} = \dfrac{1}{{60}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{{20}} - \dfrac{1}{{60}} = \dfrac{1}{{{d_o}}} \\
$
Where, ${d_o}$ denotes the distance of the object at convex mirror.
\[\dfrac{1}{{{d_o}}} = \dfrac{1}{{30}}\]
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
That is
\[
\dfrac{1}{d} = \dfrac{1}{f} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{d} = \dfrac{1}{{60}} + \dfrac{1}{{30}} \\
\dfrac{1}{d} = \dfrac{{90}}{{1800}} \\
d = 20\,\,cm \\
\]
Therefore, the value of the $d$ is 20 cm.
Hence the option (D), \[d = 20\,\,cm\] is the correct answer.
Note: Image distance denotes that when the image is created then the distance between pole and image is known image distance. Focal length is the interval between pole and the principal focus of the mirror.
Useful formula:
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
Where, the $d$ is the distance between the convex lens and convex mirror, $f$ is the focal length of the convex mirror.
Complete step by step solution:
The data given in the problem is;
Focal length of the convex lens is, ${f_1} = 20\,\,cm$.
Focal length of the convex mirror is, ${f_2} = 20\,\,cm$
Distance of the image placed from the image is, ${u_1} = 30\,\,cm$
At convex lens;
$\dfrac{1}{{{f_1}}} = \dfrac{1}{{{v_1}}} + \dfrac{1}{{{u_1}}}$
Substituting the value of focal length and the object distance from the lens
$
\dfrac{1}{{20}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{30}} \\
\dfrac{1}{{20}} - \dfrac{1}{{30}} = \dfrac{1}{{{d_i}}} \\
$
Where, ${d_i}$ denotes the distance of the image at convex lens.
\[\dfrac{1}{{{d_i}}} = \dfrac{1}{{60}}\]
At convex mirror:
$\dfrac{1}{{{f_2}}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{u_o}}}$
Substitutes the values of the focal length and the image distance;
$
\dfrac{1}{{20}} = \dfrac{1}{{60}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{{20}} - \dfrac{1}{{60}} = \dfrac{1}{{{d_o}}} \\
$
Where, ${d_o}$ denotes the distance of the object at convex mirror.
\[\dfrac{1}{{{d_o}}} = \dfrac{1}{{30}}\]
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
That is
\[
\dfrac{1}{d} = \dfrac{1}{f} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{d} = \dfrac{1}{{60}} + \dfrac{1}{{30}} \\
\dfrac{1}{d} = \dfrac{{90}}{{1800}} \\
d = 20\,\,cm \\
\]
Therefore, the value of the $d$ is 20 cm.
Hence the option (D), \[d = 20\,\,cm\] is the correct answer.
Note: Image distance denotes that when the image is created then the distance between pole and image is known image distance. Focal length is the interval between pole and the principal focus of the mirror.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main