A body takes just twice the time as long to slide the plane inclined at ${30^ \circ }$ to the horizontal as if the plane frictionless. The coefficient of friction between and the plane is
Answer
Verified
118.8k+ views
Hint Use the formula of the acceleration and calculate it for both the frictionless condition and the frictional condition. Find the relation between the acceleration and the time taken and substitute the known values in it, to find the coefficient of the friction.
Useful formula
The formula for the acceleration of the body is
${a_{}} = g\left( {\sin {\theta ^ \circ } - {\mu _k}\cos {\theta ^ \circ }} \right)$
Where is the acceleration of the body, $g$ is the acceleration due to gravity , ${\mu _k}$ is the coefficient of the friction and $\theta $ is the angle of the surface with the horizontal.
Complete step by step solution
It is given that the
Time taken to slide the plane, ${t_2} = 2{t_1}$
The angle that the plane forms with the horizontal, $\theta = {30^ \circ }$
It is known that when there is no friction between the surfaces of sliding, then the acceleration of the block is equal to $g\sin \theta $ .
${a_1} = g\sin {30^ \circ }$
By simplifying the above equation, we get
${a_1} = \dfrac{g}{2}$
In the presence of the frictional force, the acceleration of the block is calculated as follows.
${a_2} = g\left( {\sin {{30}^ \circ } - {\mu _k}\cos {{30}^ \circ }} \right)$
By further simplification,
${a_2} = \dfrac{g}{2}\left( {1 - \sqrt 3 {\mu _k}} \right)$
It is known that the square of time is inversely proportional to that of the acceleration,
$\dfrac{{t_2^2}}{{t_1^2}} = \dfrac{{{a_1}}}{{{a_2}}}$
Substituting that ${t_2} = 2{t_1}$ and the value of the acceleration in the above equation,
$\dfrac{{4t_1^2}}{{t_1^2}} = \dfrac{1}{{\left( {1 - \sqrt 3 {\mu _k}} \right)}}$
By simplifying the above equation,
${\mu _k} = \dfrac{{\sqrt 3 }}{4}$
Hence the coefficient of the friction is obtained as $\dfrac{{\sqrt 3 }}{4}$ .
Note Remember that the friction helps the plane to stand at a particular place by making it ${30^ \circ }$ inclined with the horizontal. In the frictionless condition, it falls down soon. The relation between the time and the acceleration is calculated from the formula ${\text{acceleration}} = \dfrac{{{\text{distance}}}}{{{\text{tim}}{{\text{e}}^2}}}$.
Useful formula
The formula for the acceleration of the body is
${a_{}} = g\left( {\sin {\theta ^ \circ } - {\mu _k}\cos {\theta ^ \circ }} \right)$
Where is the acceleration of the body, $g$ is the acceleration due to gravity , ${\mu _k}$ is the coefficient of the friction and $\theta $ is the angle of the surface with the horizontal.
Complete step by step solution
It is given that the
Time taken to slide the plane, ${t_2} = 2{t_1}$
The angle that the plane forms with the horizontal, $\theta = {30^ \circ }$
It is known that when there is no friction between the surfaces of sliding, then the acceleration of the block is equal to $g\sin \theta $ .
${a_1} = g\sin {30^ \circ }$
By simplifying the above equation, we get
${a_1} = \dfrac{g}{2}$
In the presence of the frictional force, the acceleration of the block is calculated as follows.
${a_2} = g\left( {\sin {{30}^ \circ } - {\mu _k}\cos {{30}^ \circ }} \right)$
By further simplification,
${a_2} = \dfrac{g}{2}\left( {1 - \sqrt 3 {\mu _k}} \right)$
It is known that the square of time is inversely proportional to that of the acceleration,
$\dfrac{{t_2^2}}{{t_1^2}} = \dfrac{{{a_1}}}{{{a_2}}}$
Substituting that ${t_2} = 2{t_1}$ and the value of the acceleration in the above equation,
$\dfrac{{4t_1^2}}{{t_1^2}} = \dfrac{1}{{\left( {1 - \sqrt 3 {\mu _k}} \right)}}$
By simplifying the above equation,
${\mu _k} = \dfrac{{\sqrt 3 }}{4}$
Hence the coefficient of the friction is obtained as $\dfrac{{\sqrt 3 }}{4}$ .
Note Remember that the friction helps the plane to stand at a particular place by making it ${30^ \circ }$ inclined with the horizontal. In the frictionless condition, it falls down soon. The relation between the time and the acceleration is calculated from the formula ${\text{acceleration}} = \dfrac{{{\text{distance}}}}{{{\text{tim}}{{\text{e}}^2}}}$.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs