
The students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ are to be divided into 3 groups A, B, and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities for forming such groups is
Answer
139.2k+ views
Hint: Here the given question is based on concept of combination. To form a 3 groups A, B and C we have to solve it by 3 cases on ways of choosing 1 student to at most 3 students in a group by the concept of combination then summing over all three cases to get a required number of possibilities of forming a group
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Recently Updated Pages
JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Notes

JEE Advanced 2025 Revision Notes for Physics on Modern Physics

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Formula for Mean Deviation For Ungrouped Data

JEE Main 2025: Derivation of Equation of Trajectory in Physics

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
