
If\[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\]. Then find the value of \[X\].
A. \[\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
B. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
C. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Answer
232.8k+ views
Hint: First, solve the given equation \[AX = B\] for the value of \[X\] by pre-multiplying both sides by \[{A^{ - 1}}\]. Then calculate the determinant of the matrix \[A\]. If the value of the determinant is non-zero. Then calculate the adjoint matrix of the given matrix and substitute the values in the formula for the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Substitute the values of the determinant and adjoint matrix in the equation for \[X\]. Solve the equation by using the scalar and matrix multiplication methods and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

