
If \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[I\]
B. \[\left| A \right|\]
C. \[\left| A \right|I\]
D. None of these
Answer
228.3k+ views
Hint: First, calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\]. Then substitute the value of \[adj A\] and \[A\] in the given expression and simplify it by using the matrix multiplication method to get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Recently Updated Pages
If A left beginarray20c3457endarray right then find class 12 maths JEE_Advanced

If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced

If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced

If A left beginarray20c22 32endarray right and B left class 12 maths JEE_Advanced

Find the inverse matrix of the matrix left beginarray20c012123311endarray class 12 maths JEE_Advanced

Let C1 and C2 be two biased coins such that the probabilities class 12 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

