
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{4}$
D. $\dfrac{\pi }{3}$
Answer
231.9k+ views
Hint: In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$. So, we will consider this as equation 1. Now we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$. After that, we will get equation 2. Now we will add equations 1 and 2 to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Recently Updated Pages
JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

