Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Important Questions for Class 7 Maths Integers - 2025-26

ffImage
banner

Integers Class 7 Extra Questions and Answers Free PDF Download

Chapter 1, "Integers," helps Class 7 students understand positive and negative numbers and how to use them in different mathematical operations like addition, subtraction, multiplication, and division. To make learning easier, we have compiled important questions for this chapter. These questions will help students practise and master the basics of integers. Download the FREE PDF to access these questions anytime and improve your understanding.

toc-symbolTable of Content
toggle-arrow


Created in line with the CBSE Class 7 Maths Syllabus, these Important Questions are an excellent way for students to prepare for their exams. The CBSE Class 7 Maths Important Questions cover all the essential topics in all the chapters, helping students improve their problem-solving skills through consistent practice. Download the PDF now to access it anytime, anywhere.

Access Important Questions for Class 7 Maths Chapter 1- Integers

A.Very short answer question – 1 marks

1. Define Integers.

Ans: The numbers range from negative infinity to positive infinity including zero. They are denoted by I i.e.  $ \text{I=}\left\{ \left. .....\text{-3,-2,-1,0,1,2,3}..... \right\} \right. $ .


2. We move to the left in the number line when we__________ or __________.

Ans: We move to the left in the number line when we add a negative integer or subtract a positive integer.


3. Additive inverse of  $ \text{-25} $  is ____.

Ans:  $ 25 $ .


4. Fill the blanks for  $ \text{-228+96+125} $  ___  $ \text{-451+197+76}\left( \text{use <,>,=} \right) $ 

Ans:  $  >  $ 


5. What would come in place of ? in  $ \text{-11+0=?} $ 

Ans:  $ \text{-11} $ 


6. Fill the blanks for  $ \text{-22 }\!\!\times\!\!\text{ -13 }\!\!\times\!\!\text{ 5=} $  _____

Ans:  $ \text{1430} $ 


7.Fill the blanks for  $ \text{-3 }\!\!\times\!\!\text{ 125=} $  ___

Ans: $ \text{-375} $ 


B. Short Answer Questions – 2 marks

8. Verify  $ \text{a-}\left( \text{-b} \right)\text{=a+b} $  for the following values of  $ \text{a} $  and  $ \text{b} $ 


a.  $ \text{a=25,b=12} $ 

Ans: Substituting value of  $ \text{a} $  and  $ \text{b} $  in given equation

$ \text{a-}\left( \text{-b} \right)\text{=a+b} $ 

 $ \text{25-}\left( \text{-12} \right)\text{=25+12} $ 

 $ \,\text{25+12=25+12} $ 

 $ \text{37=37} $ 

Hence, verified.


b. $ \text{a=113,b=16} $ 

Ans: Substituting value of  $ \text{a} $  and  $ \text{b} $  in given equation

 $ \text{a-}\left( \text{-b} \right)\text{=a+b} $ 

 $ \text{113-}\left( \text{-16} \right)\text{=113+16} $ 

 $ \text{113+16=113+16} $ 

 $ \text{129=129} $ 


9. Use  $ \text{,} $   or  $ \text{=} $  sign for the below statements to make it true 

a. $ \left( \text{-9} \right)\text{+}\left( \text{-28} \right) $ ____  $ \left( \text{-9} \right)\text{-}\left( \text{-28} \right) $ 

Ans: Solving both sides-

$ \left( \text{-9} \right)\text{+}\left( \text{-28} \right)=-37 $ 

$ \left( \text{-9} \right)\text{-}\left( \text{-28} \right)=19 $ 

Thus,  $ \left( \text{-9} \right)\text{+}\left( \text{-28} \right) < \left( \text{-9} \right)\text{-}\left( \text{-28} \right) $  


b. $ \text{25+}\left( \text{-14} \right)\text{-18} $  ____   $ \text{25+}\left( \text{-14} \right)\text{-}\left( \text{-18} \right) $ 

Ans: Solving both sides-

 $  \text{2}5+\left( -14 \right)-18=11-18  $ 

 $  =\text{-7} $ 

 $  \text{25+}\left( \text{-14} \right)\text{-}\left( \text{-18} \right)=11+18  $ 

 $  =29 $ 

Thus,  $ \text{2}5+\left( -14 \right)-18 < \text{25+}\left( \text{-14} \right)\text{-}\left( \text{-18} \right) $.


10. Write down a pair of integers for the following 

a. Sum gives  $ \text{-9} $ 

Ans:  A pair of integers that gives sum  $ \text{-9} $  is  $ \left( -6,-3 \right) $.


b. Difference gives  $ \text{-11} $ 

Ans:  A pair of integers that gives sum  $ \text{-11} $  is  $ \left( -14,3 \right) $.


11.  a. Write a positive and negative integer whose sum is  $ \text{-4} $ .

Ans: $ \left( 4,-8 \right) $  is a positive and negative integer whose sum is  $ \text{-4} $  .


b.Write a negative integer and a positive integer whose difference is  $ \text{-2} $ .

Ans:  $ \left( -1,1 \right) $  is a positive and negative integer whose sum is  $ \text{-2} $  . 


12. Fill in the blanks

a.  $ \left( \text{-4} \right)\text{+}\left( \text{-11} \right)\text{=}\left( \text{-11} \right)\text{+ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ } $ 

Ans: $ \left( \text{-4} \right)\text{+}\left( \text{-11} \right)\text{=}\left( \text{-11} \right)\text{+ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ } $ 

\[\Rightarrow \left( \text{-4} \right)\text{+}\left( \text{-11} \right)\text{+11}\]

\[\Rightarrow -4\]

Thus,  $ \left( \text{-4} \right)\text{+}\left( \text{-11} \right)\text{=}\left( \text{-11} \right)\text{+-4} $ 


b.  $ \left[ \text{22+}\left( \text{-9} \right) \right]\text{+}\left( \text{-2} \right)\text{=22+}\left[ \text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ +}\left( \text{-2} \right) \right] $ 

Ans: \[\left[ \text{22+}\left( \text{-9} \right) \right]\text{+}\left( \text{-2} \right)\text{=22+}\left[ \text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ +}\left( \text{-2} \right) \right]\]

\[\Rightarrow \text{13-2=22+}\left[ \text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ +}\left( \text{-2} \right) \right]\]

\[\Rightarrow \text{11-22=}\left[ \text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ +}\left( \text{-2} \right) \right]\]

\[\Rightarrow \text{-11= }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ +}\left( \text{-2} \right)\]

\[\Rightarrow \text{-11+2}\]

\[\Rightarrow \text{-9}\]

Thus, \[\left[ \text{22+}\left( \text{-9} \right) \right]\text{+}\left( \text{-2} \right)\text{=22+}\left[ \text{-9+}\left( \text{-2} \right) \right]\]


13.  Verify  $ \text{7 }\!\!\times\!\!\text{ }\left[ \left( \text{22} \right)\text{+}\left( \text{-9} \right) \right]\text{=}\left[ \left( \text{7} \right)\text{ }\!\!\times\!\!\text{ 22} \right]\text{+}\left[ \text{7 }\!\!\times\!\!\text{ -9} \right] $ 

Ans:  On solving both sides

$ \text{7 }\!\!\times\!\!\text{ }\left[ \left( \text{22} \right)\text{+}\left( \text{-9} \right) \right]\text{=}\left[ \left( \text{7} \right)\text{ }\!\!\times\!\!\text{ 22} \right]\text{+}\left[ \text{7 }\!\!\times\!\!\text{ -9} \right] $ 

$ 7\times \left[ 13 \right]=154-63 $ 

$ 91=91 $ 

Hence, verified.


14.Find the product of

a.  $ \text{63 }\!\!\times\!\!\text{ 0 }\!\!\times\!\!\text{ -7} $ 

Ans: The product of  $ \text{63 }\!\!\times\!\!\text{ 0 }\!\!\times\!\!\text{ -7} $  is  $ 0 $  .


b. $ \text{5 }\!\!\times\!\!\text{ }\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ -2} $ 

Ans: So, $ 5\times \left( -3 \right)\times -2=5\times 6 $ 

$ =30 $ 

The product of  $ 5\times \left( -3 \right)\times -2 $  is  $ 30 $  .


15. 

a.  $ \text{-2 }\!\!\times\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ =14} $ 

Ans: So,  $ \text{-2 }\!\!\times\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{ =14} $ 

$ \Rightarrow \dfrac{\text{14}}{\text{-2}} $ 

$ \Rightarrow \text{-7} $ 

Hence,  $ \text{-2 }\!\!\times\!\!\text{ 7 =14} $  .


b. \[\text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\times\!\!\text{ -8=-32}\]

Ans:  So, \[\text{ }\!\!\_\!\!\text{  }\!\!\_\!\!\text{  }\!\!\_\!\!\text{   }\!\!\times\!\!\text{ -8=-32}\]

\[\Rightarrow \dfrac{-32}{-8}\]

\[\Rightarrow 4\]

Hence, \[\text{4 }\!\!\times\!\!\text{ -8=-32}\]


16. Evaluate 

a. $ \text{-39 }\!\!\div\!\!\text{ 13} $ 

Ans:  $ -39\div 13 $ 

$ \Rightarrow \dfrac{-39}{13} $ 

$ \Rightarrow -3 $ 

Hence,  $ -39\div 13=-3 $ 


b. $ \text{-64 }\!\!\div\!\!\text{ }\left[ \text{-8 }\!\!\times\!\!\text{ -8} \right] $ 

Ans:  $ -64\div \left[ -8\times -8 \right] $ 

$ \Rightarrow \dfrac{-64}{\left[ -8\times -8 \right]} $ 

$ \Rightarrow \dfrac{-64}{64} $ 

$ \Rightarrow -1 $ 

Hence,  $ -64\div \left[ -8\times -8 \right]=-1 $


17. Write two pairs of integers such that  $ \text{a }\!\!\div\!\!\text{ b=-5} $ 

Ans:The two pairs of integers such that  $ \text{a }\!\!\div\!\!\text{ b=-5} $  are:

> $ \left( 10,-2 \right) $ 

> $ \left( -70,14 \right) $ 


C. Short answer questions – 3 marks

18.  Manvita deposits Rs.  $ \text{5000} $   in her bank account after two days. She withdraws Rs.  $ \text{3748} $   from it. If the amount deposited is a positive integer. How will you represent the amount withdrawn and also find the balance amount in the account?

Ans: The amount withdrawn should always be represented as a negative integer.

Thus, it would be  $ -3748 $.

Since, Total balance  $ = $   Amount deposited  $ - $  Amount withdrawn

Therefore,

Total balance  $ =5000-3748 $ 

 $ \text{=Rs}\text{. 1252} $ .

Hence, the amount withdrawn would be negative integer i.e.,  $ -3748 $  and the balance amount in the account is  $ \text{Rs}\text{. 1252} $ .


19. In a game Mishala scored  $ \text{20,}\,\text{-40,}\,\text{10} $  and Meera scored  $ \text{-40,10,}\,\text{20} $ . Who scored more and can we add scores (integers) in any order?

Ans: Since, Mishala scored  $ \text{20,}\,\text{-40,}\,\text{10} $ .

Therefore, total score of Mishala is 

 $ \text{=20-40+}\,\text{10} $ 

 $ \text{=-20+10} $ 

 $ \text{=-10} $ 

And since, Meera scored  $ \text{-40,}\,1\text{0,}\,2\text{0} $ .

Therefore, total score of Meera is 

 $ \text{=-40+}\,\text{10+20} $ 

 $ \text{=-20+10} $ 

 $ \text{=-10} $ 

Hence, both scored the same points in a game but in a different order.

Yes, we can add integers in any order.


20. Find the product with suitable properties for the following-

a. $ \text{16 }\!\!\times\!\!\text{ }\left( \text{-34} \right)\text{+}\left( \text{-34} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-18} \right) $ 

Ans: Given 

$ \text{16 }\!\!\times\!\!\text{ }\left( \text{-34} \right)\text{+}\left( \text{-34} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-18} \right) $ 

By distributive property-

 $ \text{a }\!\!\times\!\!\text{ b+a }\!\!\times\!\!\text{ c=a}\left[ \text{b+c} \right] $ 

Thus, 

 $ \text{=-34}\left[ \text{16-18} \right] $ 

 $ \text{=-34 }\!\!\times\!\!\text{ -2} $ 

 $ \text{=68} $ 

Hence,  $ \text{16 }\!\!\times\!\!\text{ }\left( \text{-34} \right)\text{+}\left( \text{-34} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-18} \right)=68 $ .


b. $ \text{23 }\!\!\times\!\!\text{ -36 }\!\!\times\!\!\text{ 10} $ 

Ans: Given 

$ 23\times -36\times 10 $ 

By commutative property-

 $ \left( \text{a }\!\!\times\!\!\text{ b} \right)\text{ }\!\!\times\!\!\text{ c=a }\!\!\times\!\!\text{ }\left( \text{b }\!\!\times\!\!\text{ c} \right) $ 

Thus,

 $ =23\times \left[ -36\times 10 \right] $ 

 $ =23\times -360 $ 

 $ =-8280 $ 


21.  A fruit merchant earns a profit of Rs. $ \text{6} $  per bag of orange sold and a loss of Rs. $ \text{4} $  per bag of grapes sold.

a. Merchant sells  $ \text{1800} $  bags of orange and  $ \text{2500} $  bags of grapes. What is the profit or loss?

Ans: Since, profit is denoted by a positive integer and a loss is denoted by a positive integer.

Therefore, profit earned by selling  $ \text{1} $  bag of orange is Rs.  $ 6 $ 

Profit earned by selling  $ \text{1800} $  bags or orange is 

 $ \text{6 }\!\!\times\!\!\text{ 1800} $  

 $ \text{=Rs}\text{. 10,800} $  

Loss incurred by selling  $ 1 $  bag of grapes is Rs.  $ -4 $  

Loss incurred by selling  $ 2500 $  bags of grapes is

 $ =-4\times 2500 $ 

 $ =10,000 $  

Total profit or loss earned  $ = $  Profit  $ + $ Loss

 $  =10,800+10,000  $ 

 $  =800 $  

Hence, a profit of Rs. $ 800 $   will be earned by a merchant.


b. What is the number of bags of oranges to be sold to have neither profit nor loss if the number of grapes bags are sold is  $ \text{900} $  bags?

Ans: Since profit is denoted by a positive integer and a loss is denoted by a positive integer.

Therefore, Loss incurred while selling  $ 1 $   bag of grapes  $ \text{=-Rs}\text{.4} $  

Loss incurred while selling 900 bags of grapes be 

 $ =-4\times 900 $ 

 $ =-3600 $  

Let the number of bags of oranges to be sold  $ \text{=x} $  

Profit earned when  $ 1 $  bag of orange is sold  $ \text{=Rs}\text{.6} $  

Profit earned while selling x bags of orange  $ \text{=6x} $  

Condition for no profit, no loss

Profit earned  $ + $   Loss incurred  $ =0 $  

 $ \text{6x-3600=0} $ 

 $ \text{6x=3600} $ 

 $ \text{x=}\dfrac{\text{3600}}{\text{6}} $ 

\[\text{x=600}\]

Hence, to have neither profit nor loss \[\text{600}\] number of bags of oranges to be sold.


22.  Verify that \[\text{a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\ne \left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\] for each of the following values of  $ \text{a,b} $  and  $ \text{c} $ .

a. $ \text{a=8,}\,\text{b=4,}\,\text{c=2} $ 

Ans:For equation \[\text{a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\ne \left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\].

L.H.S  \[\text{=a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\]

\[\text{=8 }\!\!\div\!\!\text{ }\left( \text{-4+2} \right)\]

\[\text{=8 }\!\!\div\!\!\text{ }\left( \text{-2} \right)\]

\[\text{=-4}\]

R.H.S  \[=\left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\]

 $ \text{=}\left( \text{8 }\!\!\div\!\!\text{ -4} \right)\text{+}\left( \text{8 }\!\!\div\!\!\text{ 2} \right) $ 

 $ \text{=-2+4} $ 

 $ \text{=2} $ 

Hence,  $ \text{L}\text{.H}\text{.S}\ne \text{R}\text{.H}\text{.S} $  .

Thus, \[\text{a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\ne \left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\] for  $ \text{a=8,}\,\text{b=4,}\,\text{c=2} $ .


b. $ \text{a=-15,}\,\text{b=2,}\,\text{c=1} $ 

Ans: For equation \[\text{a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\ne \left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\].

L.H.S  \[\text{=a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\]

 $ \text{=-15 }\!\!\div\!\!\text{ }\left( \text{2+1} \right) $ 

 $ \text{=-15 }\!\!\div\!\!\text{ 3} $ 

 $ \text{=-5} $ 

R.H.S  \[=\left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\]

 $ \text{=}\left( \text{-15 }\!\!\div\!\!\text{ 2} \right)\text{+}\left( \text{-15 }\!\!\div\!\!\text{ 1} \right) $ 

 $ \text{=-7}\text{.5+}\left( \text{-15} \right) $ 

 $ \text{=-22}\text{.5} $ 

Hence,  $ \text{L}\text{.H}\text{.S}\ne \text{R}\text{.H}\text{.S} $ 

Thus, \[\text{a }\!\!\div\!\!\text{ }\left( \text{b+c} \right)\ne \left( \text{a }\!\!\div\!\!\text{ b} \right)\text{+}\left( \text{a }\!\!\div\!\!\text{ c} \right)\] for  $ \text{a=-15,}\,\text{b=2,}\,\text{c=1} $  .


23. In a CET Examination  $ \left( \text{+2} \right) $  marks are given for every current answer and  $ \left( \text{-0}\text{.5} \right) $   marks are given for every wrong answer and  $ 0 $  for non-attempting any question.

a. Likitha scores  $ \text{30} $  marks. If she got  $ \text{20} $ correct answers, how many questions she has attempted incorrectly?

Ans: Marks obtained for  $ 1 $  correct answer  $ \text{=+2} $  

Marks obtained for  $ 1 $  wrong answer  $ \text{=-0}\text{.5} $  

So, Marks scored by Likitha =  $ 30 $  

Marks obtained by  $ 20 $  correct answers $ =20\times 2=40 $  

Marks obtained for incorrect answer  $ = $  Total score  $ - $  Marks obtained by  $ 20 $  correct answer

 $ =30-40 $  

 $ =-10 $ 

Marks obtained for  $ 1 $  wrong answer $ =-0.5 $  

 $ \therefore  $ The number of incorrect answers $ =\dfrac{-10}{-0.5} $  

 $ =20 $  

Hence, she attempted  $ 20 $  questions wrongly.


b. Saara scores  $ \text{-4} $  marks if she got  $ \text{3} $  correct answers. How many were incorrect?

Ans: Marks obtained for  $ 1 $  correct answer  $ \text{=+2} $  

Marks obtained for  $ 1 $  wrong answer  $ \text{=-0}\text{.5} $  

So, Marks scored by Saara  $ =-4 $  

Marks obtained for 3 correct answers $ =3\times 2=6 $  

Marks obtained for incorrect answers  $ = $  Total score  $ - $  Marks obtained for  $ 3 $  correct answer

 $ =-4-6=-10 $  

Marks obtained for 1 wrong answer $ =-0.5 $  

 $ \therefore  $ The number of incorrect questions  $ =\dfrac{-10}{-0.5} $  

 $ =20 $  

Hence,  $ 20 $  questions were incorrect. 


Integer

An integer is one of the fundamental parts of Mathematics. It can be quoted as a number that can be depicted without any fractional components. For instance, 3, 61, 70, 5 all are integers, while 6.54, 5.89 are non-integer numbers.

 

We can easily blend out an integer from a series of counting numbers. Let's make it clear with an example, suppose if a counting number is subtracted from itself, the result will be zero. If a larger counting number is removed from a smaller whole number, the output becomes a negative integer. When we subtract the smaller number from the larger whole number, it results in a positive integer. Applying this methodology, we can derive many integers ranging from negative to positive. A set of integers are depicted by 'Z.'

 

Z = {….., -4,-3,-2,-1,0,1,2,3,4,…..n}.

 

Properties of Integers

Some of the properties of an integer are as follows:

 

Commutative Property

The commutative properties of an integer depict that if we perform any operation like multiplication or some numbers, the numbers’ position can be swapped without differing in the output.

 

Let's make the property clear with an example:

  • Suppose X and Y are two non-zero integers,

  • Therefore, the commutative property of addition is X + Y = Y + X.

  • And, the commutative property of multiplication is X x Y = Y x X.

 

Associative Property

The associative property of integers depicts that if we perform an addition or multiplication operation on any set of numbers, the result will be identical, irrespective of the grouping of the multiplicands or addends. Some of the traits of associative properties are mentioned below:

  • The associative property of integers involves a minimum of 3 numbers.

  • Generally, the integers are grouped using parenthesis.

  • The numbers defined within the parenthesis are depicted by one unit.

  • The associative property can only be implemented for addition and multiplication operations and not for division or subtraction.

Let's take an example to make the associative property clear. According to the property, 7 + (8 + 2) = 2 + (7 + 8).

 

Distributive Property

The distributive property depicts that if two or more numbers are added and multiplied with another number, it will be identical to the current output if each addend is individually multiplied and then added together.

 

Here's an example to clear the distributive property of integers:

  • (7 + 1 + 2) x 5

  • This equation can be simplified to 10 x 5 = 50,

  • While if we dismantle the equation as 7 x 5 + 1 x 5 + 2 x 5, the result will be equal, i.e., 50.

 

Arithmetical Operations Using Integers

Addition of Integers

There are a set of rules to add integer with same and different signs:

  • During the addition of two integer numbers with the same sign, the output generated also depicts the same sign. Example: 7 + 8 = 15.

  • For the addition of two integers, one with positive and one with negative signs, the result must retain the largest integer sign. The operation must be performed by subtracting the two integers. Example: 8 + (-14) = -6.

 

Subtraction of Integers

The rules to perform subtraction of integers are as follows:

  • If the subtraction is to be performed between two integers with different signs, i.e., one negative and one positive, the output will retain the largest integer's sign. Example: 9 - 5 = 4.

  • If the subtraction is performed between two negative integers, the result can be obtained by adding the same number with the opposite sign. Example: -7 - (-9) = -7 + 9 = 2.

 

Multiplication of Integers

Multiplication of a positive and a negative integer - The result of the multiplication of a positive and a negative integer can be generated simply by multiplying both the numbers and denoting the output with a minus(-) sign. For example: -7 x 6 = -42.

  • Multiplication of Two Negative Integers - The product of two negative integers is always a positive integer. For example: -2 x -7 = 14.

  • Multiplication of Three or More Negative Integers - If the total integers to be multiplied is even, then the output will carry plus (+) sign. The total number of integers to be multiplied is odd. The result will carry the minus(+) sign.

 

Division of Integers

  • Division of a Negative Integer by a Positive Integer - When a negative number is divided by a positive number, the quotient comes with a negative sign.

  • Division of a Negative Integer by Another Negative Integer - when a negative number is divided by another negative number, the quotient comes with a positive sign.

To get in-depth details about the topics, students can practise the important questions in class 7 Maths chapter 1.


5 Important Formulas of Class 7 Chapter 1 Integers You Shouldn’t Miss!

Here are 5 important formulas from Class 7 Maths Chapter 1 (Integers) that students should not miss:


1. Additive Identity of Integers:  

   $ a + 0 = a $  

(Adding zero to any integer gives the same integer.)


2. Multiplicative Identity of Integers:  

   $ a \times 1 = a $  

(Multiplying any integer by 1 gives the same integer.)


3. Additive Inverse of an Integer:  

   $ a + (-a) = 0 $  

(The sum of an integer and its negative gives zero.)


4. Multiplication of Integers:  

  • $ (+a) \times (+b) = ab $  

  • $ (-a) \times (-b) = ab $  

  • $ (+a) \times (-b) = -ab $  

(Product of integers depends on their signs.)


5. Division of Integers:  

  • $ (+a) \div (+b) = a \div b $  

  • $ (-a) \div (-b) = a \div b $  

  • $ (+a) \div (-b) = -(a \div b) $  

(Division of integers follows similar rules as multiplication.)


Benefits of Important Questions for Class 7 Maths Chapter 1

  • Practising these Important Questions for Class 7 Maths Chapter 1 helps students secure good marks by building a strong understanding of concepts.

  • These practise questions are crafted according to strict CBSE guidelines and reviewed by experienced professionals.

  • Thorough practice enables students to understand each concept and theory in the chapter.

  • If students encounter any difficulties, they can refer to detailed solutions provided by Vedantu.

  • Vedantu’s master educators have prepared these questions after thorough analysis of past exams to cover key points effectively.


Conclusion

Students who find it challenging to study Mathematics can build their logic to score well in the examination. To kick start the class 7 academic journey, the students must efficiently practise the Important Questions of Class 7 Maths Chapter 1 Integers, which they can access for free on Vedantu’s website. Students just have to download the PDF and then they can solve the extra questions from the comfort of their homes anytime.

For more study materials related to different chapters of Class 7 Mathematics, students can visit Vedantu’s website and explore the huge collection of free resources available with us.


Related Study Materials for Class 7 Maths Chapter 1 Integers


Chapter-wise Revision Notes Links for Class 7 Maths


Important Study Materials for Class 7 Maths

WhatsApp Banner

FAQs on CBSE Important Questions for Class 7 Maths Integers - 2025-26

1. What types of important questions can be expected from CBSE Class 7 Maths Chapter 1, Integers, for the 2025-26 session?

For the 2025-26 session, you can expect a mix of questions from the Integers chapter. These typically include:

  • 1-mark questions: Finding the additive inverse, multiplying or dividing two integers, and simple true/false questions based on properties.

  • 2-mark questions: Verifying properties like the associative or distributive property with given numbers.

  • 3-mark questions: Word problems involving temperature changes, elevation differences, or scores in a quiz.

  • HOTS questions: Problems requiring multiple steps or the application of more than one property to simplify an expression.

2. Which properties of integers are most frequently tested in exams?

The most frequently tested properties of integers in Class 7 exams are the Distributive Property and the Associative Property. The distributive property (a × (b + c) = a × b + a × c) is crucial for simplifying complex multiplications. The associative property is often used in questions that ask you to verify if the property holds for subtraction or division, which it does not.

3. What is the most common mistake students make in exam questions involving the subtraction of negative integers?

The most common mistake is mishandling the signs. Many students forget that subtracting a negative integer is the same as adding its positive counterpart. For example, in the problem 15 – (-5), students might incorrectly calculate it as 10 instead of the correct answer, 15 + 5 = 20. Always remember that two consecutive negative signs become a positive.

4. Can you provide an example of a 3-mark word problem from Integers and how to solve it?

A typical 3-mark question might be: "In a class test containing 10 questions, 5 marks are awarded for every correct answer and (-2) marks for every incorrect answer. Rohan attempts all questions but gets only 6 correct. What is his final score?"

Solution Steps:

  • Marks for 6 correct answers = 6 × 5 = 30 marks.

  • Number of incorrect answers = 10 - 6 = 4.

  • Marks for 4 incorrect answers = 4 × (-2) = -8 marks.

  • Rohan's final score = Total marks for correct answers + Total marks for incorrect answers = 30 + (-8) = 22 marks.

5. Why is the distributive property so important for solving complex integer problems in exams?

The distributive property is a powerful tool because it helps break down difficult multiplication problems into simpler ones. For example, calculating 45 × (-98) is hard. But using the distributive property, you can write it as 45 × (2 - 100). This becomes (45 × 2) - (45 × 100), which is 90 - 4500 = -4410. This method is faster and reduces calculation errors, which is why it is essential for exam questions designed to test mental maths and simplification skills.

6. What kind of Higher-Order Thinking Skills (HOTS) questions can be framed from the Integers chapter?

HOTS questions from Integers often involve patterns or real-life scenarios that require logical reasoning. For example, a question might ask: "An elevator descends into a mine shaft at a rate of 6 m/min. If the descent starts from 10 m above ground level, how long will it take to reach -350 m?" This question requires you to calculate the total distance (10 - (-350) = 360 m) and then use it to find the time, testing your understanding beyond simple arithmetic.

7. How can I use a number line as a quick verification tool for integer operations during an exam?

A number line is an excellent tool for double-checking answers, especially with negative numbers. To check (-3) + 5, start at -3 on the number line and move 5 units to the right, landing on +2. To check 4 - 7, start at 4 and move 7 units to the left, landing on -3. Visualising this movement helps prevent sign errors and confirms that your answer is logical, which is a useful strategy under exam pressure.

8. Why does the closure property not apply to the division of integers? Can you give an example?

The closure property for an operation states that if you perform the operation on any two numbers in a set, the result will also be in that set. Division of integers is not closed because dividing two integers does not always result in another integer. For instance, if we take two integers, 5 and 2, their division (5 ÷ 2) gives 2.5, which is a decimal, not an integer. This is a key concept often tested in 1-mark objective questions.

9. What is the additive inverse, and how is it used to solve important questions in Class 7 Maths?

The additive inverse of an integer is the number that, when added to it, results in zero. For example, the additive inverse of 7 is -7, because 7 + (-7) = 0. In exams, this concept is important for solving equations and word problems. For instance, a question might ask what number should be subtracted from -3 to get -9. The solution involves setting up an equation: (-3) - x = -9. Understanding the additive inverse helps in isolating the variable and solving the problem correctly.