Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 11 Maths Important Questions - Chapter 11 Introduction to Three Dimensional Geometry

ffImage
banner

Important Questions for CBSE Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry FREE PDF Download

Chapter 11 of CBSE Class 11 Maths Introduction to Three-Dimensional Geometry introduces students to the basics of geometry in three-dimensional space. It covers key concepts such as 3D coordinates, the distance between two points, section formulas, and the equations of a line. These topics help students visualise spatial relationships and solve problems involving geometric figures in a 3D plane.

toc-symbolTable of Content
toggle-arrow


To help students prepare effectively for exams, a collection of Important Questions for Chapter 11 are created by experts at Vedantu according to the latest Class 11 Maths Syllabus. These Important Questions for Class 11 Maths are prepared to cover key topics and types of problems that are frequently asked in exams.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access Important Questions for Class 11 Mathematics Chapter 11 - Introduction to Three Dimensional Geometry

1 Marks Questions

1.Name the octant in which the following lie: $(5,2,3)$

Ans: Octant I


2. Name the octant in which the following lie: $( - 5,4,3)$

Ans: Octant II


3. Find the image of $( - 2,3,4)$ in the y $z$ plane

Ans: $(2,3,4)$


4. Find the image of $(5,2, - 7)$ in the x y plane.

Ans: $(5,2,7)$


5. A point lie on ${\mathbf{X}}$-axis what are co- ordinate of the point

Ans: $(a,0,0)$


6. Write the name of plane in which $x$ axis and $y$- axis are taken together.

Ans: X Y Plane


7. The point $(4, - 3, - 6)$ lie in which octants

Ans: VIII


8. The point $(2,0,8)$ lie in which plane

Ans: XZ Plane


9. A point is in the $XZ$ plane. What is the value of y co-ordinates?

Ans: $Zero$


10. What is the coordinates of $XY$ plane

Ans: $(x,y,0)$


11. The point $( - 4,2,5)$ lie in which octant.

Ans:  Octant II


12. The distance from origin to point $(a,b,c)$ is:

Ans: Distance from origin=$\sqrt {{a^2} + {b^2} + {c^2}} $


4 Marks Questions

1. Given that $P(3,2, - 4),Q(5,4, - 6)$ and $R(9,8, - 10)$ are collinear. Find the ratio in which $Q$ divides PR

Ans: Suppose Q divides PR in the ratio $\lambda :1.$ Then coordinator of ${\text{Q}}$ are

$\left( {\dfrac{{9\lambda  + 3}}{{\lambda  + 1}},\dfrac{{8\lambda  + 2}}{{\lambda  + 1}},\dfrac{{ - 10\lambda  - 4}}{{\lambda  + 1}}} \right)$

But, coordinates of ${\text{Q}}$ are $(5,4, - 6).$Therefore

$\dfrac{{9\lambda  + 3}}{{2 + 1}} = 5,\dfrac{{8\lambda  + 2}}{{\lambda  + 1}} = 4,\dfrac{{ - 10\lambda  - 4}}{{2 + 1}} = 6$

These three equations give

$\hat \alpha  = \dfrac{1}{2}$

So Q divides PR in the ratio $\dfrac{1}{2}:1$ or 1:2


2. Determine the points in x y plane which is equidistant from these point A $(2,0,3)$T${\text{B}}(0,3,2)$ and $C(0,0,1)$

Ans: Since the z coordinate in the xy plane is zero. So, let P(x, y, 0) be a point in xy- plane, such that PA=PB=PC. $Now,PA = PB$

PA2 = PB2

$ \Rightarrow {(x - 2)^2} + {(y - 0)^2} + {(0 - 3)^2} = {(x - 0)^2} + {(y - 3)^2} + {(0 - 2)^2}$

$2x - 3y = 0 \ldots ..(i)$

$PB = PC$

$ \Rightarrow P{B^2} = P{C^2}$

$ \Rightarrow {(x - 0)^2} + {(y - 3)^2} + {(0 - 2)^2} = {(x - 0)^2} + {(y - 0)^2} + {(0 - 1)^2}$T

$ \Rightarrow  - 6y + 12 = 0 \Rightarrow y = 2 \ldots  \ldots ..(ii)$

Put $y = 2$ in (i) we get $x = 3$

Hence the points required are $(3,2,0)$.


3. Find the locus of the point which is equidistant from the point ${\text{A}}(0,2,3)$ and ${\text{B}}(2, - 2,1)$

Ans: Let \[Q(x,y,z)\]be any point which is equidistant from $A(0,2,3)$ and $B(2, - 2,1).$ Then

\[QA = QB\]

Squaring both sides, we get

\[QA\]2 = \[QB\]2

$ \Rightarrow \sqrt {{{(x - 0)}^2} + {{(y - 2)}^2} + {{(2 - 3)}^2}}  = \sqrt {{{(x - 2)}^2} + {{(y + 2)}^2} + {{(z - 1)}^2}} $

$\Rightarrow 4x - 8y - 42 + 4 = 0$

$\Rightarrow x - 2y - 2 + 1 = 0$

$\Rightarrow x - 2y - 1 = 0$


4. Show that the points\[P(2, - 1,3),Q(0,1,2),R(2, - 1,3)\]  are vertices of an isosceles right angled triangle.

Ans: We have

$PQ = \sqrt {{{(2 - 0)}^2} + {{( - 1 - 1)}^2}{{( + 3 - 2)}^2}}  = \sqrt {4 + 4 + 1}  = 3$

$QR = \sqrt {{{(1 - 2)}^2} + {{( - 3 + 1)}^2} + {{(1 - 3)}^2}}  = \sqrt {1 + 4 + 4}  = 3$

And $RP = \sqrt {{{(1 - 0)}^2} + {{( - 3 - 1)}^2} + {{(1 - 2)}^2}}  = \sqrt {1 + 16 + 1}  = 3\sqrt 2 $

Clearly $PQ = QR$ and $PQ$2 + $QR$2 = $RP$2

Hence triangle $PQR$ is an isosceles right angled triangle.


5. Using the section formula, prove that the three points $A( - 2,3,5), B(1,2,3)$, and $C(7,0, - 1)$ are collinear.

Ans: Assume that the given points are collinear and $C$ divides $AB$ in the ratio $\lambda  = 1.$

Then coordinates of $C$ are

$\left( {\dfrac{{\lambda  - 2}}{{2 + 1}},\dfrac{{2\lambda  + 3}}{{\lambda  + 1}},\dfrac{{3\hat 2 + 5}}{{\lambda  + 1}}} \right)$

But the coordinates of $C$ are $(3,0, - 1)$ from the above equations we get $\lambda  = \dfrac{3}{2}$

Since these equation give the same value of ${V_.}$

∴  the given points are collinear and$C$ divides $AB$ exactly in the ratio 3: 2.


6. Show that coordinator of the centroid of triangle with vertices $A\left( {{x_1}{y_1}{z_1}} \right),{\text{B}}\left( {{x_2}{y_2}{z_2}} \right)$,T$\operatorname{and} C\left( {{x_3}{y_3}{z_3}} \right)$ is $\left[ {\dfrac{{{x_1} + {y_1} + {z_1}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$

Ans: Let $D$ be the mid-point of $BC$ ,then


coordinator of the centroid of triangle with vertices $A\left( {{x_1}{y_1}{z_1}} \right),{\text{B}}\left( {{x_2}{y_2}{z_2}} \right)$,T$\operatorname{and} C\left( {{x_3}{y_3}{z_3}} \right)$ is $\left[ {\dfrac{{{x_1} + {y_1} + {z_1}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$


Coordinates of ${\text{D}}$are $\left( {\dfrac{{{x_2} + {x_2}}}{2},\dfrac{{{y_2} + {y_3}}}{2},\dfrac{{{z_2} + {z_3}}}{2}} \right)$

Let${\text{G}}$ be the centroid of $\vartriangle ABC$. The ${\text{G}}$, divides${\text{AD}}$ in the ratio 2:  1. So coordinates of ${\text{D}}$are

$\left( {\dfrac{{1.{x_1} + 2\dfrac{{\left( {{x_2} + {x_3}} \right)}}{2}}}{{1 + 2}} \cdot \dfrac{{{{1.2}_1} + 2\left( {\dfrac{{{y_2} + {y_3}}}{2}} \right)}}{{1 + 2}} = \dfrac{{1 - {z_1} + 2\left( {\dfrac{{{z_2} + {z_3}}}{2}} \right)}}{{1 + 2}}} \right)$

$\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right)$

7. Prove by distance formula that the points $X(1,2,3),Y( - 1, - 1, - 1),Z(3,5,7)$ are collinear.

Ans: The Distance

$|XY| = \sqrt {{{( - 1 - 1)}^2} + {{( - 1 - 2)}^2} + {{( - 1 - 3)}^2}}  = \sqrt {4 + 9 + 16}  = \sqrt {29} $

Distance

$|YZ| = \sqrt {{{(3 + 1)}^2} + {{(5 + 1)}^2} + {{(7 + 1)}^2}}  = \sqrt {16 + 36 + 64}  = 2\sqrt {29} $

Distance

$|XZ| = \sqrt {{{(3 - 1)}^2} + {{(5 - 2)}^2} + {{(7 - 3)}^2}}  = \sqrt {4 + 9 + 16}  = \sqrt {29} $

$\therefore |YZ| = |XY| + |XZ|$

The points $X,Y,Z$ are collinear.


8. find the co-ordinate of the point which divides the join of $A(2, - 1,4),B(4,3,2)$ in the ratio $2:5(i)$ internally (ii) externally

Ans: Let $C(x,y,z)$ be the required point

i. For internal division

$x = \dfrac{{2 \times 4 + 5 \times 2}}{{2 + 5}} = \dfrac{{8 + 10}}{7} = \dfrac{{18}}{7}$

$y = \dfrac{{2 \times 3 + 5 \times  - 1}}{{2 + 5}} = \dfrac{{6 - 5}}{7} = \dfrac{1}{7}$

$z = \dfrac{{2 \times 2 + 5 \times 4}}{{2 + 5}} = \dfrac{{4 + 20}}{7} = \dfrac{{24}}{7}$

$\therefore $Required point$C\left( {\dfrac{{18}}{7},\dfrac{1}{7},\dfrac{{24}}{7}} \right)$

ii. For external division.

$x = \dfrac{{2 \times 4 - 5 \times 2}}{{2 - 5}} = \dfrac{{8 - 10}}{{ - 3}} = \dfrac{{ - 2}}{{ - 3}} = \dfrac{2}{3}$

$y = \dfrac{{2 \times 3 - 5 \times  - 1}}{{2 - 5}} = \dfrac{{6 + 5}}{{ - 3}} = \dfrac{{11}}{{ - 3}}$

$z = \dfrac{{2 \times 2 - 5 \times 4}}{{2 - 5}} = \dfrac{{4 - 20}}{{ - 3}} = \dfrac{{ - 16}}{{ - 3}} = \dfrac{{16}}{3}$

$\therefore $Required point $C\left( {\dfrac{2}{3},\dfrac{{ - 11}}{3},\dfrac{{16}}{3}} \right)$


9. Find the co-ordinate of a point equidistant from the four points

$P(0,0,0),Q(a,0,0),R(0,b,0)$ and $S(0,0,c)$.

Ans: let $A(x,y,z)$ be the required point

According to condition

$PA = AQ = AR = AS$

Now $PA = AQ$

$ \Rightarrow P{A^2} = A{Q^2}$

$ \Rightarrow {x^2} + {y^2} + {z^2} = {(x - a)^2} + {(y - 0)^2} + {(z - 0)^2}$

$ \Rightarrow {x^2} + {y^2} + {z^2} = {x^2} - 2ax + {a^2} + {y^2} + {z^2}$

$2ax = {a^2}$

$\therefore x = \dfrac{a}{2}$

Similarly $PA = AR$

$ \Rightarrow y = \dfrac{b}{2}$

$Q\left( {x,y,{z_,}} \right)\quad ,R\left( {{x_2},{y_2},{z_2}} \right)$ and $S\left( {{x_3},{y_3},{z_3}} \right)D,E$ and $F$ are mid points of side $RS,SQ$ and $QR$ respectively.

Then $\dfrac{{{x_1} + {x_2}}}{2} =  - 1$

${x_1} + {x_2} =  - 2 \ldots ..(1)$

$\dfrac{{{y_1} + {y_2}}}{2} = 1$

${y_1} + {y_2} = 2 \ldots  \ldots $(2)

$\dfrac{{{z_1} + {z_2}}}{2} =  - 4$

${z_1} + {z_2} =  - 8 \ldots  \ldots (3)$

$\dfrac{{{x_2} + {x_3}}}{2} = 1$

${x_2} + {x_3} = 2 \ldots  \ldots (4)$

$\dfrac{{{y_2} + {y_3}}}{2} = 2$

$y2 + y3 = 4 \ldots ..(5)$

$\dfrac{{{z_2} + {z_3}}}{2} =  - 3$

${z_2} + {z_3} =  - 6 \ldots  \ldots $(6)

$\dfrac{{{x_1} + {r_3}}}{2} = 3$

${x_1} + {x_3} = 6 \ldots  \ldots (7)$

$\dfrac{{{y_1} + {y_3}}}{2} = 0$

${y_1} + {y_3} = 0 \ldots  \ldots (8)$

$\dfrac{{{z_1} + {z_3}}}{2} = 1$

${z_1} + {z_3} = 2 \ldots  \ldots (9)$

Adding equation (1), (4) and (7) we get

$2\left( {{y_1} + {y_2} + {y_3}} \right) = 6$

${y_1} + {y_2} + {y_3} = 3 \ldots  \ldots (11)$

And $PA = AS$

$ \Rightarrow z = \dfrac{c}{2}$

Hence co-ordinate of $A(\dfrac{a}{2},\dfrac{b}{2},\dfrac{c}{2})$


10. Find the ratio in which the join the $B(2,1,5)$ and $C(3,4,3)$ is divided by the plane$2x + 2y - 2z = 1$. Also find the co-ordinate of the point of division.

Ans: Assume the plane$2x + 2y - 2z = 1$ divides $A(2,1,5)$ and $B(3,4,5)$ in the ratio $\lambda :1$ at point $A$

Then the co-ordinate of the point $A$

$\left( {\dfrac{{3\lambda  + 2}}{{\lambda  + 1}} \cdot \dfrac{{4\lambda  + 1}}{{\lambda  + 1}}\dfrac{{3\lambda  + 5}}{{\lambda  + 1}}} \right)$

$\because $ Point $A$ lies on the plane $2x + 2y - 2z = 1$

$\therefore $ Points $A$ must satisfy the equation of plane

$2\left( {\dfrac{{3\lambda  + 2}}{{\lambda  + 1}}} \right) + 2\left( {\dfrac{{4\lambda  + 1}}{{\lambda  + 1}}} \right) - 2\left( {\dfrac{{3\lambda  + 5}}{{\lambda  + 1}}} \right) = 1$

$ \Rightarrow 8\lambda  - 4 = \lambda  + 1$

$ \Rightarrow \lambda  = \dfrac{5}{7}$

$\therefore $ Required ratio 5:7


11. Find the centroid of a triangle, mid-points of whose sides are $D(1,2, - 3),E(3,0,1)$and$F( - 1,1, - 4)$.

Ans: Suppose the co-ordinate of vertices of $\vartriangle ABC$ are

Add equation (3), (6) and (9)

$2\left( {{z_1} + {z_2} + {z_3}} \right) =  - 8 - 6 + 2$

${z_1} + {z_2} + {z_3} =  - 6 \ldots  \ldots (12)$

Co-ordinate of centroid


the centroid of a triangle, mid-points of whose sides are $D(1,2, - 3),E(3,0,1)$and$F( - 1,1, - 4)$.


$x = \dfrac{{{x_1} + {x_2} + {x_3}}}{3} = \dfrac{3}{3} = 1$

$y = \dfrac{{{y_1} + {y_2} + {y_3}}}{3} = \dfrac{3}{3} = 1$

$z = \dfrac{{{z_1} + {z_2} + {z_3}}}{3} = \dfrac{{ - 6}}{3} =  - 2$

$(1,1, - 2)$


12. The mid points of the sides of $\vartriangle ABC$ are given by $( - 2,3,5),(4, - 1,7)$ and $(6,5,3)$ find the co-ordinate of ${\text{A}},{\text{B}}$ and${\text{C}}$.

Ans: Let us suppose that the co-ordinates of point $A,B$ AND $C$ are $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$and $\left( {{x_3},{y_3},{z_3}} \right)$ respectively. Let $D,E$ and$F$are the mid-points of side $BC,CA$and $AB$respectively.


The mid points of the sides of $\vartriangle ABC$ are given by $( - 2,3,5),(4, - 1,7)$ and $(6,5,3)$ find the co-ordinate of ${\text{A}},{\text{B}}$ and${\text{C}}$.


$x$1 + $x$2 =12T………(1)

$\dfrac{{{y_1} + {y_2}}}{2} = 5$

${y_1} + {y_2} = 10 \ldots  \ldots (2)$

$\dfrac{{{z_1} + {z_2}}}{2} = 3$

${z_1} + {z_2} = 6 \ldots  \ldots $(3)

$\dfrac{{{x_2} + {x_3}}}{2} =  - 2$

${x_2} + {x_3} =  - 4 \ldots  \ldots (4)$

$\dfrac{{{y_2} + {y_3}}}{2} = 3$

${y_2} + {y_3} = 6 \ldots  \ldots (5)$

$\dfrac{{{z_1} + {z_2}}}{2} = $

${z_1} + {z_2} = 10 \ldots  \ldots (6)$

$\dfrac{{{x_1} + {x_3}}}{2} = 4$

${x_1} + {x_3} = 8 \ldots  \ldots (7)$

$\dfrac{{{y_1} + {y_3}}}{2} =  - 1$

${y_1} + {y_3} =  - 2 \ldots  \ldots $(8)

$\dfrac{{{z_1} + {z_3}}}{z} = 7$

${z_1} + {z_3} = 14 \ldots  \ldots $(9)

Add equation (1), (4) and (7)

$2\left( {{x_1} + {x_2} + {x_3}} \right) = 12 - 4 + 8$

${x_1} + {x_2} + {x_3} = \dfrac{{16}}{3} = 8 \ldots ..(10)$

Similarly,${y_1} + {y_2} + {y_3} = 7 \ldots  \ldots (11)$

${z_1} + {z_2} + {z_3} = 15 \ldots  \ldots (12)$

Subtract equation (1), (4) and (7) from (10)

${x_3} =  - 4,\quad {x_1} = 12,\quad {x_2} = 0$

Now subtract equation (2), (5) and (8) from (11)

${y_3} =  - 3,\quad {y_1} = 1,\quad {y_2} = 9$

Similarly,${z_3} = 9,\quad {z_1} = 5,\quad {z_2} = 1$

$\therefore $ co-ordinate of point $A,B$and $C$are

$A(12,0, - 4),B(1,9, - 3)$ ,and$C(5,1,9)$


13. Find the co-ordinates of the points which trisects the line segment $QP$ formed by joining the point $P(4,2, - 6)$ and $Q(10, - 16,6)$.

Ans: Let $R\& S$ be the points of trisection of the line  segment $QP$ . Then


the co-ordinates of the points which trisects the line segment $QP$ formed by joining the point $P(4,2, - 6)$ and $Q(10, - 16,6)$.


$ \Rightarrow 2PR = RQ$

$ \Rightarrow \dfrac{{PQ}}{{RQ}} = \dfrac{1}{2}$

$S$divide $QP$in the ratio 1: 2

$\therefore $ Co-ordinates of point

$S\left[ {\dfrac{{1(10) + 2 \times 4}}{{1 + 2}},\dfrac{{1( - 16) + 2 \times 2}}{{1 + 2}},\dfrac{{1 \times 6 + 2( - 6)}}{{1 + 2}}} \right]$

$S(6, - 4, - 2)$

Similarly,$PS = 2SQ$

$ \Rightarrow \dfrac{{PS}}{{SQ}} = \dfrac{2}{1}$

$\therefore $$R$ divide the line segment $QP$ in the ratio 2:1

$\therefore $ co-ordinates of point $R$

$R\left[ {\dfrac{{2(10) + 1(4)}}{{1 + 2}},\dfrac{{2( - 16) + 1(2)}}{{1 + 2}},\dfrac{{2(6) + 1( - 6)}}{{1 + 2}}} \right]$

$\therefore R(8, - 10,2)$


14. Show that the point $A(1,2,3),B( - 1, - 2, - 1),C(2,3,2)$ and $D(4,7,6)$ taken in order form the vertices of a parallelogram. Do these form a rectangle?

Ans: Mid-point of $AC$ is $\left( {\dfrac{{1 + 2}}{2},\dfrac{{2 + 3}}{2},\dfrac{{3 + 2}}{2}} \right)$

i.e. $\left( {\dfrac{3}{2},\dfrac{5}{2},\dfrac{5}{2}} \right)$

also the mid-point of $BD$ is $\left( {\dfrac{{ - 1 + 4}}{2},\dfrac{{ - 2 + 7}}{2},\dfrac{{ - 1 + 6}}{2}} \right)$

i.e.$\left( {\dfrac{3}{2},\dfrac{5}{2},\dfrac{5}{2}} \right)$

Then$AC$and  $BD$ have same mid-points

$\therefore $$AC$ and $BD$ bisect each other , It is a Parallelogram.

Now 

$AC = \sqrt {{{(2 - 1)}^2} + {{(3 - 2)}^2} + {{(2 - 3)}^2}}  = \sqrt 3 $ and

$BD = \sqrt {{{(4 + 1)}^2} + {{(7 + 2)}^2} + {{(6 + 1)}^2}}  = \sqrt {155} $

$\therefore AC \ne BD$ diagonals are not equal

PQRS is not a rectangle.


15. A point $C$with $x$ co-ordinates 4 lies on the line segment joining the points$A(2, - 3,4)$ and $B(8,0,10)$ find the co-ordinates of the point $C$.

Ans: let the point $C$ divide the line segment joining the point $A$ and $B$in the ratio $\lambda  = 1$, Then co-ordinates of Point ${\text{R}}$

$\left[ {\dfrac{{8\lambda  + 2}}{{\lambda  + 1}},\dfrac{{ - 3}}{{\lambda  + 1}},\dfrac{{10\lambda  + 4}}{{\lambda  + 1}}} \right]$

The $x$ co-ordinates of point $C$is 4

$ \Rightarrow \dfrac{{8\lambda  + 2}}{{\lambda  + 1}} = 4 = \lambda  = \dfrac{1}{2}$

$\therefore $ co-ordinates of point ${\text{R}}$

$\left[ {4,\dfrac{{ - 3}}{{\dfrac{1}{2} + 1}} \cdot \dfrac{{10 \times \dfrac{1}{2} + 4}}{{\dfrac{1}{2} + 1}}} \right]$ i.e. $(4, - 2,6)$

16. If the points $A(1,0, - 6) = B( - 3,P,q)$ and $C( - 5,9,6)$are collinear, find the values of ${\mathbf{P}}$and ${\mathbf{q}}$

Ans: Given points 

$A(1,0, - 6) = B( - 3,P,q)$ and $C( - 5,9,6)$ are collinear

Let point $B$ divide $AC$ in the ratio K:1

$\therefore $  co-ordinates of point $A\left( {\dfrac{{1 - 5K}}{{K + 1}} \cdot \dfrac{{0 + 9K}}{{K + 1}},\dfrac{{ - 6 + 6K}}{{K + 1}}} \right)$

$B( - 3,P,q)$

$\dfrac{{1 - 5K}}{{K + 1}} =  - 3$

$1 - 5K =  - 3K - 3$

$ - 2K =  - 4$

$K = \dfrac{{ - 4}}{{ - 2}}$

$K = 2$

$\therefore $ The value of ${\text{P}}$ and ${\text{q}}$ are 6 and 2.


17. Three consecutive vertices of a parallelogram $PQRS$ are $P(3, - 1,2),Q(1,2, - 4)$ and $R( - 1,1,2)$. Find fourth vertex $S$.

Ans: Given vertices of $Paralle\log ramPQRS$

$P(3, - 1,2),Q(1,2, - 4),R( - 1,1,2)$

Suppose co-ordinates of fourth vertex $S(x,y,z)$

Mid-point of $PR\left( {\dfrac{{3 - 1}}{2},\dfrac{{ - 1 + 1}}{2},\dfrac{{2 + 2}}{2}} \right)$

$ = (1,0,2)$

Mid-point of $QS\left( {\dfrac{{x + 1}}{2},\dfrac{{y + 2}}{2},\dfrac{{ - 4 + z}}{2}} \right)$

Mid-point of $PR$ = mid-point of $QS$

$\dfrac{{x + 1}}{2} = 1 \Rightarrow x = 1$

$\dfrac{{y + 2}}{2} = 0 \Rightarrow y =  - 2$

$\dfrac{{ - 4 + z}}{2} = 2 \Rightarrow z = 8$

Co-ordinates of point $S(1, - 2,8)$.


18. If $P$ and $Q$be the points $(3.4,5)$ and $( - 1,3,7)$ respectively. Find the eq. of the set points $A$ such that $A{P^2} + A{Q^2} = {K^2}$ where ${\mathbf{K}}$ is a constant.

Ans: Let co-ordinates of point P be$(x,y,z)$

$A{P^2} = {(x - 3)^2} + {(y - 4)^2} + {(z - 5)^2}$

$ = {x^2} - 6x + 9 + {y^2} - 8y + 16 + {z^2} - 10z + 25$

$ = {x^2} + {y^2} + {z^2} - 6x - 8y - 10z + 50$

$A{Q^2} = {(x + 1)^2} + {(y - 3)^2} + {(z - 7)^2}$

$ = {x^2} + 2x + 1 + {y^2} - 6y + 9 + {z^2} - 14 + 49$

$ = {x^2} + {y^2} + {z^2} + 2x - 6y - 14z + 59$

$A{P^2} + A{Q^2} = {K^2}$

$2\left( {{x^2} + {y^2} + {z^2}} \right) - 4x - 14y - 24z + 109 = {K^2}$

${x^2} + {y^2} + {z^2} - 2x - 7y - 12z = \dfrac{{{K^2} - 109}}{2}$


6 Marks Questions

1. Prove that the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.

Ans: Let $PQRS$ be tetrahedron such that the coordinates of its vertices are $P\left( {{x_1},{y_1},{z_1}} \right)$, $Q\left( {{x_2},{y_2},{z_2}} \right),R\left( {{x_2},{y_3},{z_3}} \right)$ and $S({x_4},{y_4},{z_4})$.

The coordinates of the centroids of faces $PQR,SPQ,SQR$ and $SRP$respectively.

${G_1}\left[ {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$

${G_2}\left[ {\dfrac{{{x_1} + {x_2} + {x_4}}}{3},\dfrac{{{y_1} + {y_2} + {y_4}}}{3} \cdot \dfrac{{{z_1} + {z_2} + {z_4}}}{3}} \right]$

${G_3}\left[ {\dfrac{{{x_2} + {x_3} + {x_4}}}{3},\dfrac{{{y_2} + {y_3} + {y_4}}}{3},\dfrac{{{z_2} + {z_3} + {z_4}}}{3}} \right]$

${G_4}\left[ {\dfrac{{{x_4} + {x_3} + {x_1}}}{3},\dfrac{{{y_4} + {y_3} + {y_1}}}{3} \cdot \dfrac{{{z_4} + {z_3} + {z_1}}}{3}} \right]$

Now, coordinates of point $G$ dividing $S{G_1}$ in the ratio 3: 1are


the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.


$\left[ {\dfrac{{1.{x_4} + 3\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)}}{{1 + 3}} = \dfrac{{1.{y_4} + 3\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)}}{{1 + 3}} = \dfrac{{1 - {z_4} + 3\left( {\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right)}}{{1 + 3}}} \right]$

$ = \left[ {\dfrac{{{x_1} + {x_2} + {x_3} + {x_4}}}{4},\dfrac{{{y_1} + {y_2} + {y_3} + {y_4}}}{4},\dfrac{{{z_1} + {z_2} + {z_3} + {z_4}}}{4}} \right]$

Similarly the point dividing $R{G_2},P{G_3},Q{G_4}$ and $S{G_1}$ in the ratio 3:1 has the same coordinates.

Hence the point $G\left[ {\dfrac{{{x_1} + {x_2} + {x_3} + {x_4}}}{4},\dfrac{{{y_1} + {y_2} + {y_3} + {y_4}}}{4},\dfrac{{{z_1} + {z_2} + {z_3} + {z_4}}}{4}} \right]$ is common to

$S{G_1}$, $R{G_2},P{G_3}$ and $Q{G_4}$

Hence, they are concurrent.


2. The midpoints of the sides of a triangle are $(1,5, - 1),(0,4, - 2)$ and $(2,3,4)$. Find its vertices.


seo images


Ans: Let the vertices of triangle be

$A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$

Mid-point of $A C$ is $E$

$\therefore \quad\left(\dfrac{x_{1}+x_{3}}{2}, \dfrac{y_{1}+y_{3}}{2}, \dfrac{z_{1}+z_{3}}{2}\right) \equiv(0,4,-2)$

So, $C\left(x_{3}, y_{3}, z_{3}\right) \equiv C\left(-x_{1}, 8-y_{1},-4-z_{1}\right)$

(i)

Mid-point of $A B$ is $F$

$\therefore \quad\left(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}, \dfrac{z_{1}+z_{2}}{2}\right) \equiv(2,3,4)$

So, $B\left(x_{2}, y_{2}, z_{2}\right) \equiv B\left(4-x_{1}, 6-y_{1}, 8-z_{1}\right)$

(ii) Mid-point of BC is

 $\therefore \quad \dfrac{-x_{1}+4-x_{1}}{2} =1,$$\dfrac{8-y_{1}+6-y_{1}}{2}=5$

 $\dfrac{-4-z_{1}+8-z_{1}}{2}=-1$

 $\Rightarrow \quad x_{1}=1, y_{1}=2 \text { and } z_{1}=3$

 $\therefore \quad A \equiv(1,2,3)$

 So, $B \equiv(3,4,5) \quad$ [Using (ii)]

 and $C \equiv(-1,6,-7) \quad$ [Using (i)]

 Centroid, $G \equiv\left(\dfrac{1+3-1}{3}, \dfrac{2+4+6}{3}, \dfrac{3+5-7}{3}\right)$

 $\equiv\left(1,4, \dfrac{1}{3}\right)$


3. Let $P\left( {{x_1} \cdot {y_1},{z_1}} \right)$ and $Q\left( {{x_2} \cdot {y_2},{z_2}} \right)$ be two points in space find co- ordinate of point $R$which divides$P$and $Q$ in the ratio ${m_1}:{m_2}$ by geometrically.

Ans: Let co-ordinate of Point $R$ be $(x,y,z)$ which divide line segment joining the point  $P$and $Q$ in the ratio ${m_1}:{m_2}$


seo images


Clearly , $\vartriangle PR{L^\prime }~\Delta QR{M^\prime }\quad [By - AA$similarity]

$\therefore \dfrac{{P{L^\prime}}}{{M{Q^\prime }}} = \dfrac{{PR}}{{RQ}}$

$ \Rightarrow \dfrac{{L{L^\prime } - LP}}{{MQ - M{M^\prime }}} = \dfrac{{{m_1}}}{{{m_2}}}$

$ \Rightarrow \dfrac{{NR - LP}}{{MQ - NR}} = \dfrac{{{m_1}}}{{{m_2}}}$

${\because L{L^\prime } = NR}$

${{\text{ and }}M{M^\prime } = NR}$

$ \Rightarrow \dfrac{{z - {z_1}}}{{{z_2} - z}} = \dfrac{{{m_1}}}{{{m_2}}}$

$ \Rightarrow z = \dfrac{{{m_1}{z_2} + {m_2}{z_1}}}{{{m_1} + {m_2}}}$

Similarly , we get

$y = \dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}$


4. Show that the plane $px + qy + rz + s = 0$ divides the line joining the points $\left( {{x_1},{y_1},{z_1}} \right)$and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\dfrac{{p{x_1} + q{y_1} + r{z_1} + s}}{{p{x_2} + q{y_2} + r{z_2} + s}}$.

Ans: Let the plane $px + qy + rz + s = 0$ divide the line joining the points $\left( {{x_1},{y_1},{z_1}} \right)$ and$\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\lambda  = 1$.

$\therefore x = \dfrac{{\widehat {2{x_2}} + {x_1}}}{{\lambda  + 1}} = y = \dfrac{{\lambda {y_2} + {y_1}}}{{\lambda  + 1}} = z = \dfrac{{\lambda {z_2} + {z_1}}}{{\lambda  + 1}}$

$\because $ Plane $px + qy + rz + s = 0$Passing through $\left( {{x_0}y,z} \right)$

$\therefore p\dfrac{{\left( {\lambda {x_2} + {x_1}} \right)}}{{\lambda  + 1}} + q\dfrac{{\left( {\lambda {y_2} + {y_1}} \right)}}{{\lambda  + 1}} + r\dfrac{{\left( {\lambda {z_2} + {z_1}} \right)}}{{2 + 1}} + s = 0$

$p\left( {\lambda {x_2} + {x_1}} \right) + q\left( {\lambda {y_2} + {y_1}} \right) + r\left( {\lambda {z_2} + {z_1}} \right) + s(\lambda  + 1) = 0$

$\lambda \left( {p{x_2} + q{y_2} + r{z_2} + s} \right) + \left( {p{x_1} + q{y_1} + r{z_1} + s} \right) = 0$

$\lambda  =  - \dfrac{{\left( {p{x_1} + q{y_1} + r{z_1} + s} \right)}}{{\left( {p{x_2} + q{y_2} + r{z_2} + s} \right)}}$

Hence Proved.


5.Prove that the points$0(0,0,0),P(2,0,0),Q(1,\sqrt 3 ,0)$, and $R\left( {1,\dfrac{1}{{\sqrt 3 }},\dfrac{{2\sqrt 2 }}{{\sqrt 3 }}} \right)$ are

The vertices of a regular tetrahedron.

Ans: To prove $O,P,Q,R$ are vertices of regular tetrahedron.

${{\text{ We have to show that }}}$

${|OP| = |OQ| = |OR| = |PQ| = |QR| = |RP|}$

${|OP| = \sqrt {{{(0 - 2)}^2} + {0^2} + {0^2}}  = 2{\text{ unit }}}$

${|{\text{OQ}}| = \sqrt {{{(0 - 1)}^2} + {{(0 - \sqrt 3 )}^2} + {0^2}}  = \sqrt {1 + 3}  = \sqrt 4  = 2{\text{ unit }}}$

${|OR| = \sqrt {{{(0 - 1)}^2} + \left( {0 - \dfrac{1}{{\sqrt 3 }}} \right) + {{\left( {0 - \dfrac{{2\sqrt 2 }}{3}} \right)}^2}} }$ 

${ = \sqrt {1 + \dfrac{1}{3} + \dfrac{8}{3}} }$

${ = \sqrt {\dfrac{{12}}{3}}  = \sqrt 4  = 2{\text{ unit }}}$

${|AB| = \sqrt {{{(2 - 1)}^2} + {{(0 - \sqrt 3 )}^2} + {{(10 - 0)}^2}}  = \sqrt {1 + 3 + 0} }$ 

${ = \sqrt 4  = 2{\text{ unit }}}$ 

${|BC| = \sqrt {{{(1 - 1)}^2} + {{\left( {\sqrt 3  - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {0 - \dfrac{{2\sqrt 2 }}{{\sqrt 3 }}} \right)}^2}} }$

${ = \sqrt {0 + {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} + \dfrac{8}{3}} }$ 

$ = \sqrt {\dfrac{{12}}{3}}  = 2{\text{unit}}$

$|{\text{CA}}| = \sqrt {{{(1 - 2)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }} - 0} \right)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{{\sqrt 3 }} - 0} \right)}^2}} $

$ = \sqrt {1 + \dfrac{1}{3} + \dfrac{8}{3}} $

$ = \sqrt {\dfrac{{12}}{3}}  = 2{\text{unit}}$

$\therefore |{\text{AB}}| = |{\text{BC}}| = |{\text{CA}}| = |{\text{OA}}| = |{\text{OB}}| = |{\text{OC}}| = 2$ unit

${\text{O,P,Q,R}}$ are vertices of a regular tetrahedron.


6. If ${\text{P}}$ and  ${\text{Q}}$ are the points $( - 2,2,3)$ and $( - 1,4, - 3)$ respectively, then find the locus of

${\text{A}}$ such that $3|AP| = 2|\;AQ|$.

Ans: The Given points $P( - 2,2,3)$ and $Q( - 1,4, - 3)$

Suppose co-ordinates of point $A(x,y,z)$

$|AP| = \sqrt {{{(x + 2)}^2} + {{(y - 2)}^2} + {{(2 - 3)}^2}} $

$|{\text{AP}}| = \sqrt {{x^2} + {y^2} + {z^2} + 4x - 4y - 6z + 17} $

$|AQ| = \sqrt {{{(x + 1)}^2} + {{(y - 4)}^2} + {{(z + 3)}^2}} $

$|AQ| = \sqrt {{x^2} + {y^2} + {z^2} + 2x - 8y + 6z + 26} $

$9A{P^2} = 4\;A{Q^2}$

$9\left( {{x^2} + {y^2} + {z^2} + 4x - 4y - 6z + 17} \right) = 4\left( {{x^2} + {y^2} + {z^2} + 2x - 8y + 6z + 26} \right)$

\[\left( {5{x^2} + 5{y^2} + 5{z^2} + 28x - 4y - 30z + 49 = 0} \right)\]


Benefits of Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry - Important Questions

  • Helps in understanding the basics of 3D geometry, like coordinates, distance, and section formulas.

  • Builds a foundation for advanced topics in higher classes and competitive exams.

  • Improves problem-solving and analytical thinking skills.

  • Provides practice with a variety of questions to prepare effectively for exams.

  • Helps students get familiar with the type of questions asked in CBSE exams.

  • Step-by-step solutions make it easier to understand and clear doubts.

  • Saves time by focusing on the most important and frequently asked questions.

  • Boosts confidence in understanding 3D geometry problems.


Important Study Materials for Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry


CBSE Class 11 Maths Chapter-wise Important Questions

CBSE Class 11 Maths Chapter-wise Important Questions and Answers cover topics from all 14 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on CBSE Class 11 Maths Important Questions - Chapter 11 Introduction to Three Dimensional Geometry

1. What are the most common types of important questions asked from CBSE Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry in board exams?

Important question types in this chapter frequently include:

  • Identifying the octant, axis, or plane in which a point lies
  • Using the distance formula to prove collinearity
  • Applying the section formula for given ratios (internal/external division)
  • Finding the centroid or midpoint with provided vertices or side midpoints
  • Locus-based questions (determining set of points satisfying a geometric condition)
  • Proofs involving tetrahedron concurrency or geometric constructions

These align with the CBSE 2025–26 exam pattern for 1, 3, 4, and 5 marks.

2. How can you quickly determine the location (octant, plane, or axis) of a point in three-dimensional geometry for MCQ or 1-mark questions?

Use the signs and zeros in the coordinates:

  • All positive: First octant
  • One coordinate zero: Lies on one of the coordinate planes (xy, yz, or xz)
  • Two coordinates zero: On an axis (x, y, or z)
  • Signs of x, y, z: Determine which octant using the (+/–) pattern

This method is tested in 1-mark CBSE objective questions.

3. How does the section formula help solve higher-order or application-based questions in Class 11 3D Geometry?

The section formula finds the coordinates of a point dividing a segment in a given ratio (internal or external). This is crucial for:

  • Finding a point that divides a line between two given points
  • Proving collinearity of three points (by checking if the division ratio matches for x, y, z)
  • Locating centroid, trisection, and midpoints in exam scenarios

Mastery of this formula is required for 3-mark, 4-mark, and 5-mark CBSE questions as per the 2025–26 syllabus.

4. What are typical Higher Order Thinking Skills (HOTS) questions from Introduction to Three Dimensional Geometry for CBSE Class 11?

HOTS questions generally include:

  • Proving concurrency of lines (such as lines from vertices of a tetrahedron to centroids of opposite faces)
  • Finding the locus of points equidistant from two or more points in 3D
  • Applying section formula with unconventional ratios or using planes
  • Problems involving construction or proving properties of geometric figures like tetrahedrons

Such questions are commonly seen in 5-mark and 6-mark sections.

5. What is a frequent conceptual error students make when answering important questions based on 3D coordinate geometry?

A common error is confusing the coordinate planes and axes (e.g., mixing up xy-plane with yz-plane). Students also sometimes:

  • Use the section formula incorrectly (especially for external division)
  • Forget that all three coordinates (x, y, z) are essential in 3D (unlike in 2D problems)
  • Miss squaring both sides when equating distances in locus/proof questions

Double-check the axes, coordinate values, and always include all dimensions to avoid losing marks.

6. Why is practicing important questions from Introduction to Three Dimensional Geometry crucial for both CBSE board exams and competitive tests?

Practicing important questions ensures students:

  • Build a strong foundation in key 3D geometry concepts
  • Gain confidence with problem types commonly tested in CBSE boards
  • Develop skills necessary for reasoning and application required in JEE or other competitive exams
  • Become familiar with examiner expectations for stepwise solutions and logical reasoning

7. What is the usual marking scheme and question pattern for Class 11 Introduction to Three Dimensional Geometry in the CBSE 2025–26 Maths exam?

The typical CBSE marking scheme for this chapter includes:

  • 1-mark: Objective or MCQ, e.g., identify plane, axis, or octant, or give image of a point
  • 3-mark: Formula application (distance, section, centroid), brief proofs, locus derivation
  • 4-mark: Collinearity proofs, coordinate and section-based constructions
  • 5-mark and 6-mark: HOTS, concurrency in tetrahedrons, complex loci, and construction proofs

Patterns follow the 2025–26 CBSE question blueprint, focusing on stepwise reasoning and formula usage.

8. How can you prove three points are collinear in three dimensions for an important CBSE question?

To prove collinearity:

  • Calculate the distances between each pair of points (A, B, C)
  • If the sum of any two side lengths equals the third (e.g., |AB| + |BC| = |AC|), then the points are collinear
  • Alternatively, use the section formula and check if the ratio for x, y, and z coordinates match

Both methods are accepted per CBSE exam marking.

9. How should you approach questions asking for the locus of a point equidistant from two fixed points in 3D?

For locus questions:

  • Let the coordinates of the required point be (x, y, z)
  • Set up equality of distances from both given points: AP = AQ
  • Square both sides, expand, and simplify to get an equation (generally of a plane in 3D)

This workflow matches CBSE 4-mark and 5-mark standards.

10. What key concepts about coordinate planes and axes are frequently tested in important questions from this chapter?

CBSE exams regularly test understanding of:

  • The equations of coordinate axes (e.g., x-axis: (x, 0, 0))
  • The equations of coordinate planes (e.g., xz-plane: (x, 0, z))
  • The significance of zero values for determining location in 3D space
  • How the signs of coordinates relate to octants

Clear identification of position is essential in 1-mark and conceptual application questions.

11. What board trends and changes are expected for important questions on Introduction to Three Dimensional Geometry in CBSE Class 11 Maths (2025–26)?

Expected trends for 2025–26 include:

  • More application-based and conceptual HOTS on loci, centroids, and section formula
  • Mixed-format questions combining proof and computation
  • Continued emphasis on stepwise logic, with focus on distances and ratios in 3D
  • Alignment of question patterns with updated sample papers and mark schemes

12. How do you use the section formula to establish collinearity of three points in 3D coordinate geometry?

To establish collinearity using the section formula:

  • Assume the middle point divides the segment joining the other two in some ratio
  • Set up equations using the coordinates and the ratio
  • If the ratio is the same for x, y, and z, all points are collinear

This method is frequently required for 3-mark and 4-mark CBSE questions.

13. What is a common misconception in 3D geometry board questions and how can students avoid it to score full marks?

A frequent misconception is using only two coordinates when three are required, as in 2D problems. To avoid this:

  • Always include x, y, and z values in all equations
  • Clearly identify whether a point or its image lies on a plane or an axis

Attention to all three dimensions is vital for accuracy in CBSE board answers.

14. What strategies help secure better marks in CBSE important questions from Three Dimensional Geometry for the 2025–26 session?

Score better by:

  • Learning and applying key formulas (distance, section, centroid) accurately
  • Showing all steps clearly for method marks
  • Practicing HOTS and expected board-level question types
  • Avoiding common conceptual and calculation errors
  • Studying recent CBSE sample papers to align with the latest patterns

15. How does mastering important questions from this chapter benefit students preparing for both CBSE and competitive entrance exams?

Mastery of important 3D geometry questions:

  • Reinforces spatial reasoning and logical deduction
  • Covers fundamental concepts required for CBSE and JEE/NEET
  • Helps recognize question patterns and application methods
  • Boosts overall confidence and exam performance in mathematics