
Write the expression for Lorentz magnetic force on a particle of charge $q$ moving with velocity $v$ in a magnetic field $B$. Shown that two no work is done by this force on the charged particle.
Answer
486.6k+ views
Hint
Lorentz force, the force exerted on a charged particle $q$ moving with velocity $v$ through an electric field $E$ and magnetic field $B$. The entire electromagnetic force $F$ on the charged particle is called the Lorentz force.
Complete step by step answer
We know that,
Lorentz force = magnetic force + electric force.
So, now we can say,
$F{\text{ }} = {\text{ }}[{\text{ }}qvb{\text{ }}sin\theta \; + {\text{ }}qe{\text{ }}]$
$ \Rightarrow \vec F = q(\vec V \times \vec B)\;d\vec s$
Now, $\vec F$ is perpendicular to both $\vec V$ and $\vec B$.
If $d\vec s$ is the instantaneous displacement of the change-
Then, $d\vec s$ is also perpendicular to $\vec F$
Now, according to work done formula,
$W = \vec F.d\vec s$
$ \Rightarrow W = Fs\cos {90^0 }$
But, the value of $cos 90^0$ is equal to zero.
So, $W = 0$,
That means the work done is zero and the increase in kinetic energy is zero.
Note
The work is done when a force acts upon an object to cause a displacement. Three quantities must be known in order to calculate the amount of work. Those three quantities are force, displacement and the angle between the force and the displacement.
Lorentz force, the force exerted on a charged particle $q$ moving with velocity $v$ through an electric field $E$ and magnetic field $B$. The entire electromagnetic force $F$ on the charged particle is called the Lorentz force.
Complete step by step answer
We know that,
Lorentz force = magnetic force + electric force.
So, now we can say,
$F{\text{ }} = {\text{ }}[{\text{ }}qvb{\text{ }}sin\theta \; + {\text{ }}qe{\text{ }}]$
$ \Rightarrow \vec F = q(\vec V \times \vec B)\;d\vec s$
Now, $\vec F$ is perpendicular to both $\vec V$ and $\vec B$.
If $d\vec s$ is the instantaneous displacement of the change-
Then, $d\vec s$ is also perpendicular to $\vec F$
Now, according to work done formula,
$W = \vec F.d\vec s$
$ \Rightarrow W = Fs\cos {90^0 }$
But, the value of $cos 90^0$ is equal to zero.
So, $W = 0$,
That means the work done is zero and the increase in kinetic energy is zero.
Note
The work is done when a force acts upon an object to cause a displacement. Three quantities must be known in order to calculate the amount of work. Those three quantities are force, displacement and the angle between the force and the displacement.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
