Answer
Verified
444.3k+ views
Hint: Ideal gas equation doesn’t hold true for real gases. Hence van der Waals introduced a new equation by modifying the ideal gas equation. The extra terms in van der Waals equation are a and b.
Complete step by step answer:
Van der Waals equation for real gas is,
$\left( {P + \dfrac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT$
Where,
P = Pressure of gas
V = Volume of gas
n = Number of moles of gas
T = Temperature of the gas in Kelvin.
R is universal gas constant. a and b are certain constants called van der Waals constants. a corresponds to intermolecular forces and b corresponds to co-volume of excluded volume of the gas.
In the question, n=1. i.e. the number of moles of gas is one. The corresponding equation is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$
In the derivation of the ideal gas equation, it is assumed that there is no force of interaction between the gas molecules. But it is not true. A molecule in the center of the container will experience forces of interaction from all directions equally. Hence these forces cancel each other. But when the molecule reaches the wall of the container it is attracted from only one side. Hence it will strike the wall with a lower pressure than expected if there is no attraction between the molecules. Therefore, it is necessary to add a certain correction factor with the term P. This factor is called internal pressure and is given by, \[\dfrac{a}{{{V^2}}}\] . Hence the term that account for intermolecular forces in van-der Waals equation for non-ideal gas is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)$.
And hence option C is correct.
Note:
The term b in van der Waals equation corresponds to excluded volume for one mole. It is equal to four times the volume of one mole of gaseous molecules. Value of b is directly proportional to size of the molecules.
Complete step by step answer:
Van der Waals equation for real gas is,
$\left( {P + \dfrac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT$
Where,
P = Pressure of gas
V = Volume of gas
n = Number of moles of gas
T = Temperature of the gas in Kelvin.
R is universal gas constant. a and b are certain constants called van der Waals constants. a corresponds to intermolecular forces and b corresponds to co-volume of excluded volume of the gas.
In the question, n=1. i.e. the number of moles of gas is one. The corresponding equation is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$
In the derivation of the ideal gas equation, it is assumed that there is no force of interaction between the gas molecules. But it is not true. A molecule in the center of the container will experience forces of interaction from all directions equally. Hence these forces cancel each other. But when the molecule reaches the wall of the container it is attracted from only one side. Hence it will strike the wall with a lower pressure than expected if there is no attraction between the molecules. Therefore, it is necessary to add a certain correction factor with the term P. This factor is called internal pressure and is given by, \[\dfrac{a}{{{V^2}}}\] . Hence the term that account for intermolecular forces in van-der Waals equation for non-ideal gas is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)$.
And hence option C is correct.
Note:
The term b in van der Waals equation corresponds to excluded volume for one mole. It is equal to four times the volume of one mole of gaseous molecules. Value of b is directly proportional to size of the molecules.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE