
How do you use the definition of the scalar product, find the angles between the following pairs of vectors: \[ - 4i + 5{\text{ }}j - k\] and \[3i + 4j - k\] ?
Answer
454.5k+ views
Hint: For solving this particular question we have to use the definition of the scalar product to find the angle between these two given vectors. We have to calculate the dot product , Evaluate the magnitudes, and lastly substitute into the respective expression.
Complete step by step solution:
we have given pairs of vectors: \[ - 4i + 5{\text{ }}j - k\] and \[3i + 4j - k\],
we have to use the definition of the scalar product to find the angle between these two given vectors.
Let these vectors as $ \overrightarrow A $ be equal to \[ - 4i + 5{\text{ }}j - k\] and $ \overrightarrow B $ is equal to \[3i + 4j - k\] .
We can represent the given first vector as following ,
$ \overrightarrow A = < - 4,5, - 1 > $ and
Similarly, we can represent the given second vector as following ,
$ \overrightarrow B = < 3,4, - 1 > $
We know that ,
The angle between the two vectors is given as
$ \overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $
Where $ \overrightarrow A = < - 4,5, - 1 > $ ,
$ \overrightarrow B = < 3,4, - 1 > $ ,
$ \left| {\overrightarrow A } \right| $ represents the magnitude of the vector $ \overrightarrow A $ ,
$ \left| {\overrightarrow B } \right| $ represents the magnitude of the vector $ \overrightarrow B $ and
$ \theta $ represents the angle between the two vectors that are $ \overrightarrow A $ and $ \overrightarrow B $.
Now, calculating the dot product ,
$ \overrightarrow A .\overrightarrow B = < - 4,5, - 1 > . < 3,4, - 1 > $
$
= - 12 + 20 + 1 \\
= 9;
$
Evaluating the magnitudes ,
$ \left| {\overrightarrow A } \right| = \left| { < - 4,5, - 1 > } \right| = \sqrt {16 + 25 + 1} = \sqrt {42} $
$ \left| {\overrightarrow B } \right| = \left| { < 3,4, - 1 > } \right| = \sqrt {9 + 16 + 1} = \sqrt {26} $
Lastly, substitute all the calculated value , we will get the following result ,
$ \cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| {\overrightarrow A } \right|.\left| {\overrightarrow B } \right|}} = \dfrac{9}{{\sqrt {42} .\sqrt {26} }} = 0.27 $
After simplifying we will get ,
$ \cos \theta = 0.27 $
Now, the angle between the two vectors is given as ,
$ \theta = ar\cos (0.27) = {74.2^ \circ } $
Hence, we get the required result.
So, the correct answer is “ $ \theta = ar\cos (0.27) = {74.2^ \circ } $ ”.
Note: While solving this question one must know the concept of vectors, angle between them. Questions similar in nature as that of above can be approached in a similar manner and we can solve it easily. Scalar product results in scalar and vector or cross product results in vector quantity.
Complete step by step solution:
we have given pairs of vectors: \[ - 4i + 5{\text{ }}j - k\] and \[3i + 4j - k\],
we have to use the definition of the scalar product to find the angle between these two given vectors.
Let these vectors as $ \overrightarrow A $ be equal to \[ - 4i + 5{\text{ }}j - k\] and $ \overrightarrow B $ is equal to \[3i + 4j - k\] .
We can represent the given first vector as following ,
$ \overrightarrow A = < - 4,5, - 1 > $ and
Similarly, we can represent the given second vector as following ,
$ \overrightarrow B = < 3,4, - 1 > $
We know that ,
The angle between the two vectors is given as
$ \overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $
Where $ \overrightarrow A = < - 4,5, - 1 > $ ,
$ \overrightarrow B = < 3,4, - 1 > $ ,
$ \left| {\overrightarrow A } \right| $ represents the magnitude of the vector $ \overrightarrow A $ ,
$ \left| {\overrightarrow B } \right| $ represents the magnitude of the vector $ \overrightarrow B $ and
$ \theta $ represents the angle between the two vectors that are $ \overrightarrow A $ and $ \overrightarrow B $.
Now, calculating the dot product ,
$ \overrightarrow A .\overrightarrow B = < - 4,5, - 1 > . < 3,4, - 1 > $
$
= - 12 + 20 + 1 \\
= 9;
$
Evaluating the magnitudes ,
$ \left| {\overrightarrow A } \right| = \left| { < - 4,5, - 1 > } \right| = \sqrt {16 + 25 + 1} = \sqrt {42} $
$ \left| {\overrightarrow B } \right| = \left| { < 3,4, - 1 > } \right| = \sqrt {9 + 16 + 1} = \sqrt {26} $
Lastly, substitute all the calculated value , we will get the following result ,
$ \cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| {\overrightarrow A } \right|.\left| {\overrightarrow B } \right|}} = \dfrac{9}{{\sqrt {42} .\sqrt {26} }} = 0.27 $
After simplifying we will get ,
$ \cos \theta = 0.27 $
Now, the angle between the two vectors is given as ,
$ \theta = ar\cos (0.27) = {74.2^ \circ } $
Hence, we get the required result.
So, the correct answer is “ $ \theta = ar\cos (0.27) = {74.2^ \circ } $ ”.
Note: While solving this question one must know the concept of vectors, angle between them. Questions similar in nature as that of above can be approached in a similar manner and we can solve it easily. Scalar product results in scalar and vector or cross product results in vector quantity.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
