
There are 10 seats in the first row of a theatre of which 4 are to be occupied. The number of ways of arranging 4 persons so that no two persons sit side by side is
[a] $^{7}{{C}_{4}}$
[b] $4{{\cdot }^{7}}{{P}_{3}}$
[c] $^{7}{{C}_{3}}\cdot 4!$
[d] 840
Answer
569.1k+ views
Hint: Assume that a person has a chair with himself on which he sits. Hence keep only 6 seats in the row of the theatre. Now when a person sits, he chooses a gap between two seats and places his seat in between and in this way is seated in the theatre. Observe that in this way the persons will be separated from each other by at least one seat. Claim that the process of selection of 4 seats so that no two seats are consecutive is equivalent to the above gap selection and placement of seat process. Hence find the number of ways in which the persons can be seated so that no two persons sit side by side.
Complete step-by-step answer:
Let us name the seats on which the 4 persons do not sit as 1,2,…,6 and the seats on which the persons sit as A, B, C and D. Now, when the persons are seated so that no two persons sit side by side, the seats labelled as A, B, C and D have at least one seat among the seats labelled as 1,2,…,6 in between them. Hence the process of arranging the persons on the seats so that no two persons sit side by side is equivalent to the process of arranging seats labelled as 1,2,…,6 and the seats labelled as A, B, C and D in such a way that no two seats among the set A, B, C and D are adjacent taking care of the fact that the seats labelled 1 through 6 are identical(Since empty seats are indistinguishable).
We use gap methods to find the number of arrangements of the above condition.
Arrangement of 6 identical seats labelled 1 through 6 can be done in 1 way.
Now among the 6 seats, there are 7 gaps(denoted as Xs)
X 1 X 2 X 3 X 4 X 5 X 6 X .
Among the 7 gaps, four can be selected in $^{7}{{C}_{4}}$ ways
Now the arrangement of the seats A, B, C and D in these 4 places can be done in $4!$ ways.
Hence by the fundamental principle of counting the total number of ways in which the seats can be placed so that the above-mentioned condition is met is $^{7}{{C}_{4}}4!{{=}^{7}}{{C}_{3}}4!$
Hence option [c] is correct.
Note: Alternative Solution:
Let there be ${{x}_{1}}$ seats to the left of the first person, ${{x}_{2}}$ seats after that sits the next person, ${{x}_{3}}$ seats after that sits the third person, ${{x}_{4}}$ seats after that sits the fourth person and there are ${{x}_{5}}$ seats to the right of the last person
${{x}_{1}}\ {{P}_{1}}\ {{x}_{2}}\ {{P}_{2}}\ {{x}_{3}}\ {{P}_{3}}\ {{x}_{4}}\ {{P}_{4}}\ {{x}_{5}}$
Hence, we have
${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}=6,{{x}_{1}}\ge 0,{{x}_{2}}\ge 1,{{x}_{3}}\ge 1,{{x}_{4}}\ge 1,{{x}_{5}}\ge 0$
Let ${{y}_{1}}={{x}_{1}},{{y}_{2}}={{x}_{2}}-1,{{y}_{3}}={{x}_{3}}-1,{{y}_{4}}={{x}_{4}}-1,{{y}_{5}}={{x}_{5}}$
Hence, we have
${{y}_{1}},{{y}_{2}},{{y}_{3}},{{y}_{4}},{{y}_{5}}\ge 0$ and ${{y}_{1}}+{{y}_{2}}+1+{{y}_{3}}+1+{{y}_{4}}+1+{{y}_{5}}=6\Rightarrow {{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}+{{y}_{5}}=3$
We know that the number of non-negative integral solutions of the equation ${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+\cdots +{{x}_{r}}=n$ is $^{n+r-1}{{C}_{r-1}}$
Hence, we have
The number of ways of choosing 4 seats so that no two chosen seats are consecutive is equal to the number of non-negative integral solutions of the equation ${{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}+{{y}_{5}}=3$, which is equal to $^{3+5-1}{{C}_{5-1}}{{=}^{7}}{{C}_{4}}$
Among these 4 seats, 4 persons can be placed in 4! ways.
Hence the total number of ways ${{=}^{7}}{{C}_{4}}4!{{=}^{7}}{{C}_{3}}4!$, which is the same as obtained above.
Hence option [c] is correct.
Complete step-by-step answer:
Let us name the seats on which the 4 persons do not sit as 1,2,…,6 and the seats on which the persons sit as A, B, C and D. Now, when the persons are seated so that no two persons sit side by side, the seats labelled as A, B, C and D have at least one seat among the seats labelled as 1,2,…,6 in between them. Hence the process of arranging the persons on the seats so that no two persons sit side by side is equivalent to the process of arranging seats labelled as 1,2,…,6 and the seats labelled as A, B, C and D in such a way that no two seats among the set A, B, C and D are adjacent taking care of the fact that the seats labelled 1 through 6 are identical(Since empty seats are indistinguishable).
We use gap methods to find the number of arrangements of the above condition.
Arrangement of 6 identical seats labelled 1 through 6 can be done in 1 way.
Now among the 6 seats, there are 7 gaps(denoted as Xs)
X 1 X 2 X 3 X 4 X 5 X 6 X .
Among the 7 gaps, four can be selected in $^{7}{{C}_{4}}$ ways
Now the arrangement of the seats A, B, C and D in these 4 places can be done in $4!$ ways.
Hence by the fundamental principle of counting the total number of ways in which the seats can be placed so that the above-mentioned condition is met is $^{7}{{C}_{4}}4!{{=}^{7}}{{C}_{3}}4!$
Hence option [c] is correct.
Note: Alternative Solution:
Let there be ${{x}_{1}}$ seats to the left of the first person, ${{x}_{2}}$ seats after that sits the next person, ${{x}_{3}}$ seats after that sits the third person, ${{x}_{4}}$ seats after that sits the fourth person and there are ${{x}_{5}}$ seats to the right of the last person
${{x}_{1}}\ {{P}_{1}}\ {{x}_{2}}\ {{P}_{2}}\ {{x}_{3}}\ {{P}_{3}}\ {{x}_{4}}\ {{P}_{4}}\ {{x}_{5}}$
Hence, we have
${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}=6,{{x}_{1}}\ge 0,{{x}_{2}}\ge 1,{{x}_{3}}\ge 1,{{x}_{4}}\ge 1,{{x}_{5}}\ge 0$
Let ${{y}_{1}}={{x}_{1}},{{y}_{2}}={{x}_{2}}-1,{{y}_{3}}={{x}_{3}}-1,{{y}_{4}}={{x}_{4}}-1,{{y}_{5}}={{x}_{5}}$
Hence, we have
${{y}_{1}},{{y}_{2}},{{y}_{3}},{{y}_{4}},{{y}_{5}}\ge 0$ and ${{y}_{1}}+{{y}_{2}}+1+{{y}_{3}}+1+{{y}_{4}}+1+{{y}_{5}}=6\Rightarrow {{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}+{{y}_{5}}=3$
We know that the number of non-negative integral solutions of the equation ${{x}_{1}}+{{x}_{2}}+{{x}_{3}}+\cdots +{{x}_{r}}=n$ is $^{n+r-1}{{C}_{r-1}}$
Hence, we have
The number of ways of choosing 4 seats so that no two chosen seats are consecutive is equal to the number of non-negative integral solutions of the equation ${{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}+{{y}_{5}}=3$, which is equal to $^{3+5-1}{{C}_{5-1}}{{=}^{7}}{{C}_{4}}$
Among these 4 seats, 4 persons can be placed in 4! ways.
Hence the total number of ways ${{=}^{7}}{{C}_{4}}4!{{=}^{7}}{{C}_{3}}4!$, which is the same as obtained above.
Hence option [c] is correct.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
