
The specific heat of air at constant pressure is $ 1.005kJk{{g}^{-1}}{{k}^{-1}} $ and the specific heat of air at constant volume is $ 0.718kJk{{g}^{-1}}{{k}^{-1}} $ if the universal constant is $ 8.314kJkmo{{l}^{-1}}{{k}^{1}} $ . Find the molecular weight of air?
(A) $ \text{28}\text{.97} $
(B) $ \text{24}\text{.6} $
(C) $ \text{22}\text{.8} $
(D) $ \text{19}\text{.6} $
Answer
409.5k+ views
Hint :We know that the mass of a molecule of a substance is measured in molecular weight which is dependent on $ 12 $ as atomic weight of $ carbon-12 $ in practice. It’s determined by adding the atomic weights of the atoms that make up a substance molecular formula.
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
