
The specific heat of air at constant pressure is $ 1.005kJk{{g}^{-1}}{{k}^{-1}} $ and the specific heat of air at constant volume is $ 0.718kJk{{g}^{-1}}{{k}^{-1}} $ if the universal constant is $ 8.314kJkmo{{l}^{-1}}{{k}^{1}} $ . Find the molecular weight of air?
(A) $ \text{28}\text{.97} $
(B) $ \text{24}\text{.6} $
(C) $ \text{22}\text{.8} $
(D) $ \text{19}\text{.6} $
Answer
514.5k+ views
Hint :We know that the mass of a molecule of a substance is measured in molecular weight which is dependent on $ 12 $ as atomic weight of $ carbon-12 $ in practice. It’s determined by adding the atomic weights of the atoms that make up a substance molecular formula.
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

