
The pressure of solar radiation on earth is (given solar constant $ 8.14Jc{m^{ - 2}}{\min ^{ - 1}} $ ).
$ \left( A \right)3.29 \times {10^{ - 5}}N{m^{ - 2}} \\
\left( B \right)4.53 \times {10^{ - 5}}N{m^{ - 2}} \\
\left( C \right)3.29 \times {10^{ - 4}}N{m^{ - 2}} \\
\left( D \right)4.53 \times {10^{ - 6}}N{m^{ - 2}} \\ $
Answer
455.1k+ views
Hint :In order to solve this question, we first have to convert the solar constant to the SI units so that the pressure can also be obtained in the SI units. Secondly, as we know that the pressure is the energy flux divided by the unit speed of light and energy flux is solar constant. Thus, pressure is obtained.
The formula used here says that the pressure is the energy flux divided by the unit speed of light and energy flux is solar constant.
$ pressure = \dfrac{{{E_f}}}{c} $
Where $ {E_f} $ is energy flux and $ c $ is the speed of light.
Complete Step By Step Answer:
Let us take the value of solar constant
It is Given that the value of solar constant is $ 8.14Jc{m^{ - 2}}{\min ^{ - 1}} $
Let us first convert the units of the solar constant to SI unit
Therefore, it becomes
$ \dfrac{{8.14 \times {{\left( {100} \right)}^2}}}{{60}}J{s^{ - 1}}{m^{ - 2}} \\
1356.66W{m^{ - 2}} \\ $
As we know that the pressure absorbed is given by
$ {P_A} = \dfrac{{{E_f}}}{c} $
Where $ {E_f} $ is the energy flux and $ c $ is the speed of light.
This implies
$ {P_A} = \dfrac{{1356.66}}{{3 \times {{10}^8}}} = 452.22 \times {10^{ - 8}}Pa \\
\Rightarrow {P_A} = 4.52 \times {10^{ - 6}}Pa \\ $
Therefore, the pressure of the solar radiation is $ {P_A} = 4.52 \times {10^{ - 6}}N{m^{ - 2}} $
Hence, option $ \left( D \right)4.53 \times {10^{ - 6}}N{m^{ - 2}} $ is the correct answer.
Note :
Alternatively, this question can also be solved in the following way. As we know that the power is given by
$ power = force \times velocity $
And the pressure is force per unit area
Now, $ \dfrac{{power}}{{velocity}} = force $
This implies the force is calculated as , equating the solar constant to the power and taking the velocity as speed of light, we get
$ force = \dfrac{{1356.66}}{{3 \times {{10}^8}}} \\
\Rightarrow force = 4.52 \times {10^{ - 6}}N \\ $
Now as
$ pressure = \dfrac{{force}}{{area}} \\
\Rightarrow pressure = \dfrac{{4.52 \times {{10}^{ - 6}}N}}{{{m^2}}} = 4.52 \times {10^{ - 6}}N{m^{ - 2}} \\$
Hence, by this method also, we get the correct option $ \left( D \right)4.53 \times {10^{ - 6}}N{m^{ - 2}} $
The formula used here says that the pressure is the energy flux divided by the unit speed of light and energy flux is solar constant.
$ pressure = \dfrac{{{E_f}}}{c} $
Where $ {E_f} $ is energy flux and $ c $ is the speed of light.
Complete Step By Step Answer:
Let us take the value of solar constant
It is Given that the value of solar constant is $ 8.14Jc{m^{ - 2}}{\min ^{ - 1}} $
Let us first convert the units of the solar constant to SI unit
Therefore, it becomes
$ \dfrac{{8.14 \times {{\left( {100} \right)}^2}}}{{60}}J{s^{ - 1}}{m^{ - 2}} \\
1356.66W{m^{ - 2}} \\ $
As we know that the pressure absorbed is given by
$ {P_A} = \dfrac{{{E_f}}}{c} $
Where $ {E_f} $ is the energy flux and $ c $ is the speed of light.
This implies
$ {P_A} = \dfrac{{1356.66}}{{3 \times {{10}^8}}} = 452.22 \times {10^{ - 8}}Pa \\
\Rightarrow {P_A} = 4.52 \times {10^{ - 6}}Pa \\ $
Therefore, the pressure of the solar radiation is $ {P_A} = 4.52 \times {10^{ - 6}}N{m^{ - 2}} $
Hence, option $ \left( D \right)4.53 \times {10^{ - 6}}N{m^{ - 2}} $ is the correct answer.
Note :
Alternatively, this question can also be solved in the following way. As we know that the power is given by
$ power = force \times velocity $
And the pressure is force per unit area
Now, $ \dfrac{{power}}{{velocity}} = force $
This implies the force is calculated as , equating the solar constant to the power and taking the velocity as speed of light, we get
$ force = \dfrac{{1356.66}}{{3 \times {{10}^8}}} \\
\Rightarrow force = 4.52 \times {10^{ - 6}}N \\ $
Now as
$ pressure = \dfrac{{force}}{{area}} \\
\Rightarrow pressure = \dfrac{{4.52 \times {{10}^{ - 6}}N}}{{{m^2}}} = 4.52 \times {10^{ - 6}}N{m^{ - 2}} \\$
Hence, by this method also, we get the correct option $ \left( D \right)4.53 \times {10^{ - 6}}N{m^{ - 2}} $
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
