
The molar specific heat at constant pressure of an ideal gas is $\left( {\dfrac{7}{2}} \right)R$. The ratio of specific heat at constant pressure to that at constant volume is:-
A. $\dfrac{7}{5}$
B. $\dfrac{8}{7}$
C. $\dfrac{5}{7}$
D. $\dfrac{9}{7}$
Answer
483.3k+ views
Hint:The ratio of specific heat at constant pressure to the ratio of specific heat at constant pressure is denoted as $\gamma $. In the question, the value of specific heat at constant pressure is given, we will calculate the specific heat at constant volume by using the formula given below. Also, the ratio of specific heats can be calculated by dividing the specific heat at constant pressure to the specific heat at constant volume.
Formula used:
The formula used for calculating the specific heat coefficient at constant volume is given by
${C_p} - {C_v} = R$
$ \Rightarrow \,{C_v} = {C_p} + R$
Here, ${C_p}$ is the coefficient of specific heat at constant pressure, ${C_v}$ is the coefficient of specific heat at constant volume and $R$ is the gas constant from the equation of state.
The ratio of specific heat at constant pressure to that at constant volume is given below
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
Here, $\gamma $ is the ratio of the specific heats.
Complete step by step answer:
As given in the question,the molar specific heat at constant pressure is, ${C_p} = \left( {\dfrac{7}{2}} \right)R$. Now, to calculate the specific heat at constant volume can be calculated by using the formula given below;
${C_p} - {C_v} = R$
$ \Rightarrow \,{C_v} = {C_p} - R$
$ \Rightarrow \,{C_v} = \left( {\dfrac{7}{2}} \right)R - R$
$ \Rightarrow \,{C_v} = \dfrac{5}{2}R$
Now, the ratio of specific heat at constant pressure to the specific heat at constant volume can be calculated as given below
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
$ \Rightarrow \,\gamma = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \therefore \,\gamma = \dfrac{7}{5}$
Therefore, the ratio of specific heat at constant pressure to that at constant volume is $\dfrac{7}{5}$.
Hence, option A is the correct option.
Note: Here, ${C_v}$ is the specific heat at constant volume which means that there are no moving particles in the system. On the other hand, ${C_p}$ is the specific heat at constant pressure which suggests that volume is changing. Here, in the above question, the value of ${C_p}$ and ${C_v}$ is in the form of $R$.
Formula used:
The formula used for calculating the specific heat coefficient at constant volume is given by
${C_p} - {C_v} = R$
$ \Rightarrow \,{C_v} = {C_p} + R$
Here, ${C_p}$ is the coefficient of specific heat at constant pressure, ${C_v}$ is the coefficient of specific heat at constant volume and $R$ is the gas constant from the equation of state.
The ratio of specific heat at constant pressure to that at constant volume is given below
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
Here, $\gamma $ is the ratio of the specific heats.
Complete step by step answer:
As given in the question,the molar specific heat at constant pressure is, ${C_p} = \left( {\dfrac{7}{2}} \right)R$. Now, to calculate the specific heat at constant volume can be calculated by using the formula given below;
${C_p} - {C_v} = R$
$ \Rightarrow \,{C_v} = {C_p} - R$
$ \Rightarrow \,{C_v} = \left( {\dfrac{7}{2}} \right)R - R$
$ \Rightarrow \,{C_v} = \dfrac{5}{2}R$
Now, the ratio of specific heat at constant pressure to the specific heat at constant volume can be calculated as given below
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
$ \Rightarrow \,\gamma = \dfrac{{\dfrac{7}{2}R}}{{\dfrac{5}{2}R}}$
$ \therefore \,\gamma = \dfrac{7}{5}$
Therefore, the ratio of specific heat at constant pressure to that at constant volume is $\dfrac{7}{5}$.
Hence, option A is the correct option.
Note: Here, ${C_v}$ is the specific heat at constant volume which means that there are no moving particles in the system. On the other hand, ${C_p}$ is the specific heat at constant pressure which suggests that volume is changing. Here, in the above question, the value of ${C_p}$ and ${C_v}$ is in the form of $R$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
