Answer
Verified
450.6k+ views
Hint: We can use the ideal gas equation to find which quantity varies with the variation in volume. We can check how that quantity is dependent on volume, whether directly or inversely proportional. If it’s directly proportional then the variation in both the quantities will be alike and in case of inverse proportionality, the changes in both the quantities are opposite to each other.
Complete step by step answer:
According to the ideal gas equation, we have:
\[PV = nRT\;\] where, n is the number of moles, R is the universal gas constant and T is the temperature.
Number of moles (n) is the number of molecules (N) divided by the Avogadro’s number $\left( {{N_A}} \right)$.
$ \to n = \dfrac{N}{{{N_A}}}$
$ \Rightarrow PV = \dfrac{N}{{{N_A}}}RT$
So, for the value of volume, this can be written as:
$V = \dfrac{N}{{{N_A}}} \times \dfrac{{RT}}{P}$
It is given that the Pressure and temperature are the same for the gas that means they are constant. Every quantity except the number of molecules (N) on the R.H.S of the equation.
$ \Rightarrow V \propto N$
Volume is directly proportional to the number of molecules, with the increase in volume, it will increase and vice – versa.
Thus, for equal volume of gases, the number of molecules will also be equal.
So, the correct answer is “Option A”.
Note:
The question can also be directly answered by the Avogadro’s law:
It is given that the pressure and temperature of the gases are the same. So according to the Avogadro’s law, under same conditions of temperature and pressure the number of molecules are equal for equal volume of gases
Complete step by step answer:
According to the ideal gas equation, we have:
\[PV = nRT\;\] where, n is the number of moles, R is the universal gas constant and T is the temperature.
Number of moles (n) is the number of molecules (N) divided by the Avogadro’s number $\left( {{N_A}} \right)$.
$ \to n = \dfrac{N}{{{N_A}}}$
$ \Rightarrow PV = \dfrac{N}{{{N_A}}}RT$
So, for the value of volume, this can be written as:
$V = \dfrac{N}{{{N_A}}} \times \dfrac{{RT}}{P}$
It is given that the Pressure and temperature are the same for the gas that means they are constant. Every quantity except the number of molecules (N) on the R.H.S of the equation.
$ \Rightarrow V \propto N$
Volume is directly proportional to the number of molecules, with the increase in volume, it will increase and vice – versa.
Thus, for equal volume of gases, the number of molecules will also be equal.
So, the correct answer is “Option A”.
Note:
The question can also be directly answered by the Avogadro’s law:
It is given that the pressure and temperature of the gases are the same. So according to the Avogadro’s law, under same conditions of temperature and pressure the number of molecules are equal for equal volume of gases
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE