
The initial phase angle for $ i = 10\sin \omega t + 8\cos \omega t $ is
(A) $ {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
(B) $ {\tan ^{ - 1}}\left( {\dfrac{5}{4}} \right) $
(C) $ {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
(D) $ {90^0} $
Answer
565.2k+ views
Hint: We are given with an equation and are asked to find the initial phase angle for the same. Thus, we will firstly evaluate the equation at time $ t = 0 $ . Then, we will use some basic trigonometric ideas to manipulate the evaluated value and then come up with an answer.
Complete Step By Step Solution
Here, The given equation is,
$ i = 10\sin \omega t + 8\cos \omega t $
Now, For the initial value, we take time $ t = 0 $
Taking here, we get
$ i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right) $
We know,
$ \sin \left( 0 \right) = 0 $ And $ \cos \left( 0 \right) = 1 $
Thus, we get
$ i = 8\left( 1 \right) $
Further, we get
$ i = 8 $
Now,
$ {i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
$ {i_o} = \sqrt {164} $
Where, $ {i_o} $ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$ i = {i_o}\sin \left( {\omega t + \phi } \right) $
For time $ t = 0 $ ,
$ i = {i_0}\sin \phi $
Then, we get
$ \sin \phi = \dfrac{i}{{{i_o}}} $
Thus, we get
$ \sin \phi = \dfrac{8}{{\sqrt {164} }} $
Thus,
$ \tan \phi = \dfrac{8}{{\sqrt {164 - 64} }} $
Thus,
$ \tan \phi = \dfrac{8}{{10}} $
Thus,
$ \tan \phi = \dfrac{4}{5} $
Hence, we get
$ \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
Hence, the correct option is (A).
Note
We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Complete Step By Step Solution
Here, The given equation is,
$ i = 10\sin \omega t + 8\cos \omega t $
Now, For the initial value, we take time $ t = 0 $
Taking here, we get
$ i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right) $
We know,
$ \sin \left( 0 \right) = 0 $ And $ \cos \left( 0 \right) = 1 $
Thus, we get
$ i = 8\left( 1 \right) $
Further, we get
$ i = 8 $
Now,
$ {i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}} $
Further, we get
$ {i_o} = \sqrt {164} $
Where, $ {i_o} $ is the amplitude of the motion.
Now,
As per the generic equation of such motion,
$ i = {i_o}\sin \left( {\omega t + \phi } \right) $
For time $ t = 0 $ ,
$ i = {i_0}\sin \phi $
Then, we get
$ \sin \phi = \dfrac{i}{{{i_o}}} $
Thus, we get
$ \sin \phi = \dfrac{8}{{\sqrt {164} }} $
Thus,
$ \tan \phi = \dfrac{8}{{\sqrt {164 - 64} }} $
Thus,
$ \tan \phi = \dfrac{8}{{10}} $
Thus,
$ \tan \phi = \dfrac{4}{5} $
Hence, we get
$ \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right) $
Hence, the correct option is (A).
Note
We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

