Answer
Verified
350.1k+ views
Hint: The formula of the energy in terms of the wavelength has to be used here. The formula consists of the planck's constant, the speed of light in a vacuum, and the wavelength of the light. The energy used here is the maximum. Therefore the wavelength that is calculated from the formula will also be the maximum. The value of the Plank’s constant as well as the speed of light must be known.
Formula Used:
The relationship between the Energy emitted by excited electron \[\left( E \right)\] , planck's constant\[\left( h \right)\] , speed of light in
Vacuum \[\left( c \right)\] , and the wavelength of the emitted light \[\left( \lambda \right)\],
$E = \dfrac{{hc}}{\lambda }$
Complete step by step answer:
the maximum energy emitted by the excited electron
$E = \dfrac{{hc}}{\lambda }$
\[\left( \lambda \right)\]is the maximum wavelength.
planck's constant \[\left( h \right)\]
Numerically, \[h = 6.62 \times {10^{ - 34}}{m^2}kg/s\]
\[\left( c \right)\] is the speed of light in a vacuum, \[c = 3 \times {10^8}m/s\]
In the given question we are given:-
\[E = 3.2eV\]
The emitted energy can be rewritten in terms of volts
\[E = 3.2 \times 1.6{\text{ }}x{\text{ }}{10^{ - 19}} = 5.12{\text{ }}x{\text{ }}{10^{ - 19}}V\]
We can rewrite the equation as
$\lambda = \dfrac{{hc}}{E}$
We can solve the substituted equation as
\[\lambda = \dfrac{{\left( {6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \right)}}{{5.12 \times {{10}^{ - 19}}}}m\]
so,
\[\lambda = \dfrac{{\left( {19.86 \times {{10}^{ - 24}}} \right)}}{{5.12 \times {{10}^{ - 19}}}}m\]
The calculated value of the emitted energy’s wavelength
\[\lambda = 3.88 \times {10^{ - 7}}m\]
The maximum wavelength that can be emitted in this process equals \[3.88 \times {10^{ - 7}}m\]
Note:
In semiconductors ( group- \[14\] elements), acc. to the band theory $3$ types of bands are found in them-:
Valence band- In this band electrons can be found at room temperature. But the electrons in this band can’t participate in the flow of current if an external voltage is applied to it.
Conduction band- In this band electrons are rarely found at room temperature. But the electrons present in these bands can actively participate in the flow of current in presence of applied external voltage.
Forbidden band/Gap- It is the energy difference between the conduction band and valence band. Generally, it is measured in electron volts \[\left( {eV} \right)\] .
Formula Used:
The relationship between the Energy emitted by excited electron \[\left( E \right)\] , planck's constant\[\left( h \right)\] , speed of light in
Vacuum \[\left( c \right)\] , and the wavelength of the emitted light \[\left( \lambda \right)\],
$E = \dfrac{{hc}}{\lambda }$
Complete step by step answer:
the maximum energy emitted by the excited electron
$E = \dfrac{{hc}}{\lambda }$
\[\left( \lambda \right)\]is the maximum wavelength.
planck's constant \[\left( h \right)\]
Numerically, \[h = 6.62 \times {10^{ - 34}}{m^2}kg/s\]
\[\left( c \right)\] is the speed of light in a vacuum, \[c = 3 \times {10^8}m/s\]
In the given question we are given:-
\[E = 3.2eV\]
The emitted energy can be rewritten in terms of volts
\[E = 3.2 \times 1.6{\text{ }}x{\text{ }}{10^{ - 19}} = 5.12{\text{ }}x{\text{ }}{10^{ - 19}}V\]
We can rewrite the equation as
$\lambda = \dfrac{{hc}}{E}$
We can solve the substituted equation as
\[\lambda = \dfrac{{\left( {6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \right)}}{{5.12 \times {{10}^{ - 19}}}}m\]
so,
\[\lambda = \dfrac{{\left( {19.86 \times {{10}^{ - 24}}} \right)}}{{5.12 \times {{10}^{ - 19}}}}m\]
The calculated value of the emitted energy’s wavelength
\[\lambda = 3.88 \times {10^{ - 7}}m\]
The maximum wavelength that can be emitted in this process equals \[3.88 \times {10^{ - 7}}m\]
Note:
In semiconductors ( group- \[14\] elements), acc. to the band theory $3$ types of bands are found in them-:
Valence band- In this band electrons can be found at room temperature. But the electrons in this band can’t participate in the flow of current if an external voltage is applied to it.
Conduction band- In this band electrons are rarely found at room temperature. But the electrons present in these bands can actively participate in the flow of current in presence of applied external voltage.
Forbidden band/Gap- It is the energy difference between the conduction band and valence band. Generally, it is measured in electron volts \[\left( {eV} \right)\] .
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE