
Stoke’s law states that the viscous drag force $ F $ experienced by a sphere of radius $ a $ , moving with a speed $ v $ through a fluid and coefficient of viscosity $ \eta $ , is given by $ F = 6\pi \eta av $ . If this fluid is flowing through a cylindrical pipe of radius $ r $ , length $ l $ and a pressure difference of $ p $ across its two ends, the volume of water $ V $ which flows through the pipe on time $ t $ can be written as $ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ where, $ k $ is the dimensionless constant. Correct values of $ a,b\& c $ are:
(A) $ a = 1,b = - 1,c = 4 $
(B) $ a = - 1,b = 1,c = 4 $
(C) $ a = 2,b = - 2,c = 3 $
(D) $ a = 1,b = - 2,c = - 4 $
Answer
443.4k+ views
Hint :Here, it has been asked to find the values of $ a,b\& c $ from the formula given above. Thus we have to calculate with the help of dimensions of each term used in the formula $ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Where, $ V $ is the volume of water, $ r $ is the radius of the cylindrical pipe, $ l $ is the length, $ p $ is the pressure, $ t $ is the time and $ \eta $ is the viscosity.
Complete Step By Step Answer:
Let us first use the dimensional formulas of all the terms used in the given formula.
$ \dfrac{V}{t} = k{\left( {\dfrac{p}{l}} \right)^a}{\eta ^b}{r^c} $ ….. $ (1) $
$ \left[ V \right] = \left[ {{M^0}{L^3}{T^0}} \right] $
$ \left[ t \right] = \left[ {{M^0}{L^0}{T^1}} \right] $
$ \left[ p \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] $
$ \left[ l \right] = \left[ {{L^1}} \right] $
$ \left[ r \right] = \left[ {{L^1}} \right] $
$ \left[ \eta \right] = \dfrac{{force}}{{area \times velo.gradient}} $
$ \therefore \left[ \eta \right] = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 1}}} \right] $
Thus, here we have written all the terms and their dimension now we have to put these values in equation $ (1) $ such that:
$ eq(1) \Rightarrow \dfrac{{\left[ {{M^0}{L^3}{T^0}} \right]}}{{\left[ {{M^0}{L^0}{T^1}} \right]}} = {\left[ {\dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{L^1}} \right]}}} \right]^a}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^b}{\left[ {{L^1}} \right]^c} $
$ \Rightarrow \left[ {{M^0}{L^3}{T^{ - 1}}} \right] = \left[ {{M^{a + b + 0}}{L^{ - 2a - b + c}}{T^{ - 2a - b + 0}}} \right] $
Now here we have to compare the powers of $ [MLT] $ of right hand side with the powers of $ [MLT] $ of left hand side from above equation, so we get:
$ a + b + 0 = 0 $ ….. $ (i) $
$ - 2a - b + c = 3 $ ….. $ (ii) $
$ - 2a - b + 0 = - 1 $ ….. $ (iii) $
Now, we have to solve these equation $ (i) $ , $ (ii) $ and $ (iii) $ to obtain the required values of $ a,b\& c $
Therefore, consider equations $ (i) $ and $ (iii) $
$ \Rightarrow a + b = - 2a - b + 1 $
$ \Rightarrow a = 1 $
By using, $ a = 1 $ in equation $ (i) $ , we get
$ \Rightarrow 1 + b = 0 $
$ \Rightarrow b = - 1 $
Now, put $ a = 1 $ and $ b = - 1 $ in equation $ (ii) $ , the result is:
$ \Rightarrow - 2(1) + 1 + c = 3 $
$ \Rightarrow c = 4 $
Thus, we calculated the values of $ a = 1 $ , $ b = - 1 $ and $ c = 4 $
The correct answer is the option A.
Note :
Here, simply we have to write the dimensional formula of the given quantities in the formula in which we have to calculate the required values and then we have to put those values in that formula and compare them as we have done. Here we observed that the dimensional formula for $ k $ is not written; it is because here it has been mentioned that $ k $ is not having any dimension.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
