
Standing waves are produced in \[10m\] long stretched strings. If the string vibrates in 5 segments and wave velocity is \[20m{s^{ - 1}}\] , then its frequency will be
A. \[5Hz\]
B. \[2Hz\]
C. \[10Hz\]
D. \[12Hz\]
Answer
435.9k+ views
Hint: To answer the question, we will build a simple diagram based on the question. The entire length of the string is \[10m\] , and there are five segments, so we will compute the length of one segment and determine the value of $\lambda $ , and then calculate the frequency $(\nu )$ using this $\lambda $ .
Complete answer:
Before we go into the question, let's have a look at what a standing wave is. The combination of two waves flowing in opposite directions, each with the same amplitude and frequency, is known as a standing wave.
Now, let us come to the question;
The wavelength of a stretched string's fundamental vibrational mode is twice the length of the string.
Because the string produces standing waves and vibrates in five parts, it can be shown as
\[\therefore 5\dfrac{\lambda }{2} = 10\]
Therefore, from here we will find value of $\lambda $
\[ \Rightarrow \lambda = 4{\mkern 1mu} m\]
The wave's velocity, \[v\] , is given to us in the question as $v = 20m{s^{ - 1}}$
Hence, the frequency will be \[\nu = \dfrac{v}{\lambda } = \dfrac{{20}}{4} = 5{\mkern 1mu} {s^{ - 1}} = 5{\mkern 1mu} Hz\]
Therefore, the frequency is \[5Hz\]
The correct option is: (A) \[5Hz\]
Note:
It's important to note that standing waves don't just appear out of nowhere. They call for energy to be delivered into a system at a specific frequency. That is, when a system's driving frequency is identical to its natural frequency. Resonance is the term for this situation. Standing waves are invariably linked to resonance.
Complete answer:
Before we go into the question, let's have a look at what a standing wave is. The combination of two waves flowing in opposite directions, each with the same amplitude and frequency, is known as a standing wave.
Now, let us come to the question;
The wavelength of a stretched string's fundamental vibrational mode is twice the length of the string.

Because the string produces standing waves and vibrates in five parts, it can be shown as
\[\therefore 5\dfrac{\lambda }{2} = 10\]
Therefore, from here we will find value of $\lambda $
\[ \Rightarrow \lambda = 4{\mkern 1mu} m\]
The wave's velocity, \[v\] , is given to us in the question as $v = 20m{s^{ - 1}}$
Hence, the frequency will be \[\nu = \dfrac{v}{\lambda } = \dfrac{{20}}{4} = 5{\mkern 1mu} {s^{ - 1}} = 5{\mkern 1mu} Hz\]
Therefore, the frequency is \[5Hz\]
The correct option is: (A) \[5Hz\]
Note:
It's important to note that standing waves don't just appear out of nowhere. They call for energy to be delivered into a system at a specific frequency. That is, when a system's driving frequency is identical to its natural frequency. Resonance is the term for this situation. Standing waves are invariably linked to resonance.
Recently Updated Pages
JEE Main 2025-26 Mock Test: Complex Numbers & Quadratic Equations

JEE Main 2025-26 Mock Test: Matrices and Determinants

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.2

NCERT Solutions For Class 11 Maths Sets Exercise 1.4

NCERT Solutions For Class 11 Maths Miscellaneous Exercise - Limits and Derivatives

NCERT Solutions For Class 12 Maths Integrals Exercise 7.9

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
