
How do you solve the equation? $\arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}$
Answer
476.4k+ views
Hint: We recall the domain range of tan inverse function that is $\arctan \left( x \right)$or ${{\tan }^{-1}}x$. We recall the relationship ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ and the relation ${{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{x} \right)$ for $x>0$ and ${{\cot }^{-1}}x=\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$ for $x<0$. We use these identities to find the possible solutions of $x$.
Complete step by step answer:
We know that inverse tangent function $\arctan \left( x \right)$ or ${{\tan }^{-1}}x$ has the domain as the real number set and the range as the interval$\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. \[\]
We are given the following inverse tangent function in the question.
\[\begin{align}
& \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
\end{align}\]
We see clearly that $x\ne 0$since $\dfrac{1}{x}$ is well defined in the above equation. We know from reciprocal relation between tangent inverse and cotangent inverse that
\[{{\cot }^{-1}}x=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x>0 \\
\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x<0 \\
\end{matrix} \right.\]
Let us take the first case for $x > 0$ and use the above identity we have
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right) \\
\end{align}\]
We know from complementary angle relation that ${{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)=\dfrac{\pi }{2}$. So the given equation $\arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}$ has the solution in the set. $\left( 0,\infty \right)$. If we take second case
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)-\pi \\
& \Rightarrow \dfrac{\pi }{2}-\pi =\dfrac{-\pi }{2} \\
\end{align}\]
So all the values $x\in \left( -\infty ,0 \right)$ do not satisfy the given equation. So the only valid solution we have obtained is $\left( 0,\infty \right)$.
Additional information:
Alternative method: We know from double angle formula that
\[{{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)\]
The above identity is true when$ab < 1$. We add $\pi $ in the right hand side of the above equation if $ab > 1,a > 0,b > 0$ and add $-\pi $ when $ab>1,a<0,b<0$. So let us proceed from left hand side of given equation and use ten above identify to have;
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-x\cdot \dfrac{1}{x}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-1} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right) \\
\end{align}\]
We see that above step argument for tangent inverse function is undefined and for $x>0$ the range restricts to $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and we have
\[{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right)=\dfrac{\pi }{2}\]
Hence the solution set is $\left( 0,\infty \right)$.\[\]
Note:
We should remember other reciprocal of the argument relation in tan and cot inverse function like ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x>0$ and ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x < 0$ for future problems. We note that just like an inverse ${{\cot }^{-1}}x$ has the domain the real number but its range is $\left( 0,\pi \right)$.
Complete step by step answer:
We know that inverse tangent function $\arctan \left( x \right)$ or ${{\tan }^{-1}}x$ has the domain as the real number set and the range as the interval$\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. \[\]
We are given the following inverse tangent function in the question.
\[\begin{align}
& \arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2} \\
\end{align}\]
We see clearly that $x\ne 0$since $\dfrac{1}{x}$ is well defined in the above equation. We know from reciprocal relation between tangent inverse and cotangent inverse that
\[{{\cot }^{-1}}x=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x>0 \\
\pi +{{\tan }^{-1}}\left( \dfrac{1}{x} \right) & \text{if }x<0 \\
\end{matrix} \right.\]
Let us take the first case for $x > 0$ and use the above identity we have
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right) \\
\end{align}\]
We know from complementary angle relation that ${{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)=\dfrac{\pi }{2}$. So the given equation $\arctan \left( x \right)+\arctan \left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}$ has the solution in the set. $\left( 0,\infty \right)$. If we take second case
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\cot }^{-1}}\left( x \right)-\pi \\
& \Rightarrow \dfrac{\pi }{2}-\pi =\dfrac{-\pi }{2} \\
\end{align}\]
So all the values $x\in \left( -\infty ,0 \right)$ do not satisfy the given equation. So the only valid solution we have obtained is $\left( 0,\infty \right)$.
Additional information:
Alternative method: We know from double angle formula that
\[{{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)\]
The above identity is true when$ab < 1$. We add $\pi $ in the right hand side of the above equation if $ab > 1,a > 0,b > 0$ and add $-\pi $ when $ab>1,a<0,b<0$. So let us proceed from left hand side of given equation and use ten above identify to have;
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( x \right)+{{\tan }^{-1}}\left( \dfrac{1}{x} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-x\cdot \dfrac{1}{x}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{1-1} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right) \\
\end{align}\]
We see that above step argument for tangent inverse function is undefined and for $x>0$ the range restricts to $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ and we have
\[{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{x}}{0} \right)=\dfrac{\pi }{2}\]
Hence the solution set is $\left( 0,\infty \right)$.\[\]
Note:
We should remember other reciprocal of the argument relation in tan and cot inverse function like ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x>0$ and ${{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\dfrac{\pi }{2}-{{\tan }^{-1}}\left( x \right)$ if $x < 0$ for future problems. We note that just like an inverse ${{\cot }^{-1}}x$ has the domain the real number but its range is $\left( 0,\pi \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
