
What is the S.I. unit of the gravitational constant $G$?
Answer
479.1k+ views
Hint: The proportionality constant used in Newton’s universal law of gravitation is termed as the gravitational constant that we can write in terms of force, mass, and distance. We will figure out our desired answer from the S.I. units of the other quantities associated with Newton’s law of gravitation.
Formula used:
$F \propto \dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
Complete solution:
The gravitational constant, also known as the universal gravitational constant, is an empirical constant that is involved with calculating the gravitational force of an object. According to Sir Isaac Newton’s law of universal gravitation, the gravitational force acting between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance connecting the centers of the two bodies. Therefore we have-
$F \propto \dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
${m_1},{m_2}$ are the masses of the two bodies
$r$ is the distance between the two bodies
Hence we have-
$F = K.\dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
Where $K$ is a proportionality constant, and this constant is termed as the universal gravitational constant, denoted as $G$. Therefore, the above equation is written as-
$F = G.\dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
The S.I. unit of $F$ is Newton$(N)$
The S.I. unit of ${m_1}$ and ${m_2}$ is Kilogram$(Kg)$
The S.I. unit of $r$ is meter$(m)$
From the above equation, we have-
$\Rightarrow G = F.\dfrac{{{r^2}}}{{{m_1}.{m_2}}}$
We put the S.I. units of the other quantities in the right-hand side of the equation-
$\Rightarrow G = N.\dfrac{{{{\left( m \right)}^2}}}{{{{\left( {Kg} \right)}^2}}}$
$ \Rightarrow G = \left( {Kg.m.{s^{ - 2}}} \right).\dfrac{{{{\left( m \right)}^2}}}{{{{\left( {Kg} \right)}^2}}}$
Hence, $G = {m^3}.K{g^{ - 1}}.{s^{ - 2}}$
Therefore the S.I. unit of the universal gravitational constant, i.e., $G$ is ${m^3}.K{g^{ - 1}}.{s^{ - 2}}$.
Note: The universal gravitational constant is very significant in the world of physics. The magnitude of the universal gravitational constant is $6.674 \times {10^{ - 11}}{m^3}.K{g^{ - 1}}.{s^{ - 2}}$. It is also useful in Einstein’s General Theory of Relativity. In Einstein’s field equations, this constant quantifies the relation between the energy-momentum tensor and space-time geometry.
Formula used:
$F \propto \dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
Complete solution:
The gravitational constant, also known as the universal gravitational constant, is an empirical constant that is involved with calculating the gravitational force of an object. According to Sir Isaac Newton’s law of universal gravitation, the gravitational force acting between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance connecting the centers of the two bodies. Therefore we have-
$F \propto \dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
${m_1},{m_2}$ are the masses of the two bodies
$r$ is the distance between the two bodies
Hence we have-
$F = K.\dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
Where $K$ is a proportionality constant, and this constant is termed as the universal gravitational constant, denoted as $G$. Therefore, the above equation is written as-
$F = G.\dfrac{{{m_1}.{m_2}}}{{{r^2}}}$
The S.I. unit of $F$ is Newton$(N)$
The S.I. unit of ${m_1}$ and ${m_2}$ is Kilogram$(Kg)$
The S.I. unit of $r$ is meter$(m)$
From the above equation, we have-
$\Rightarrow G = F.\dfrac{{{r^2}}}{{{m_1}.{m_2}}}$
We put the S.I. units of the other quantities in the right-hand side of the equation-
$\Rightarrow G = N.\dfrac{{{{\left( m \right)}^2}}}{{{{\left( {Kg} \right)}^2}}}$
$ \Rightarrow G = \left( {Kg.m.{s^{ - 2}}} \right).\dfrac{{{{\left( m \right)}^2}}}{{{{\left( {Kg} \right)}^2}}}$
Hence, $G = {m^3}.K{g^{ - 1}}.{s^{ - 2}}$
Therefore the S.I. unit of the universal gravitational constant, i.e., $G$ is ${m^3}.K{g^{ - 1}}.{s^{ - 2}}$.
Note: The universal gravitational constant is very significant in the world of physics. The magnitude of the universal gravitational constant is $6.674 \times {10^{ - 11}}{m^3}.K{g^{ - 1}}.{s^{ - 2}}$. It is also useful in Einstein’s General Theory of Relativity. In Einstein’s field equations, this constant quantifies the relation between the energy-momentum tensor and space-time geometry.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
