
Prove that:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Answer
571.8k+ views
Hint: For solving this question, we will use the formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ , $r!=r\times \left( r-1 \right)!$ and $0!=1$ to simplify the term on the left-hand side in each of the given part. Then, we solve further and prove the desired result easily.
Complete step-by-step answer:
Given:
We have to prove the following equations:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, before we proceed we should know the following formulas and results:
$\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}............\left( 1 \right) \\
& r!=r\times \left( r-1 \right)!..........\left( 2 \right) \\
& 0!=1........................\left( 3 \right) \\
\end{align}$
Now, we will solve for each part separately using the above formulas.
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{n}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-n \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{0!} \\
\end{align}$
Now, we will put $0!=1$ from equation (3) in the above equation. Then,
${}^{n}{{P}_{n}}=\dfrac{n!}{1}$
Now, we will write $1=1!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
\end{align}$
Now, we will write $1!=\left( n-\left( n-1 \right) \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-\left( n-1 \right) \right)!}={}^{n}{{P}_{n-1}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}} \\
\end{align}$
Hence, proved.
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{r}}$ in the above equation. Then,
\[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\]
Now, we will use the formula from the equation (2) to write $n!=n\times \left( n-1 \right)!$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}\]
Now, we will write $\left( n-r \right)=\left( n-1-\left( r-1 \right) \right)$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
\end{align}\]
Now, we will use the formula from the equation (1) to write \[\dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!}={}^{n-1}{{P}_{r-1}}\] in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times {}^{n-1}{{P}_{r-1}} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}} \\
\end{align}\]
Hence, proved.
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}$ in the above equation. Then,$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-1-r \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left
( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\left( n-r \right)!=\left( n-r \right)\times \left( n-r-1 \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
\end{align}$
Now, we will take $\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}$ common from each term in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ 1+\dfrac{r}{\left( n-r \right)} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ \dfrac{n-r+r}{n-r} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \dfrac{n}{\left( n-r \right)} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $n\times \left( n-1 \right)!=n!$ and $\left( n-r \right)\times \left( n-r-1 \right)!=\left( n-r \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-r \right)!}={}^{n}{{P}_{r}}$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}} \\
\end{align}$
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly in a correct way. After that, we should apply formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ correctly in a proper sequence and solve without any mistake to prove the desired result easily. Moreover, we could have also proved the desired result by simplifying the term on the left-hand side and right-hand side separately using formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ .
Complete step-by-step answer:
Given:
We have to prove the following equations:
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, before we proceed we should know the following formulas and results:
$\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}............\left( 1 \right) \\
& r!=r\times \left( r-1 \right)!..........\left( 2 \right) \\
& 0!=1........................\left( 3 \right) \\
\end{align}$
Now, we will solve for each part separately using the above formulas.
(i) ${}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{n}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-n \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{0!} \\
\end{align}$
Now, we will put $0!=1$ from equation (3) in the above equation. Then,
${}^{n}{{P}_{n}}=\dfrac{n!}{1}$
Now, we will write $1=1!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
\end{align}$
Now, we will write $1!=\left( n-\left( n-1 \right) \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{1!} \\
& \Rightarrow {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-\left( n-1 \right) \right)!}={}^{n}{{P}_{n-1}}$ in the above equation. Then,
$\begin{align}
& {}^{n}{{P}_{n}}=\dfrac{n!}{\left( n-\left( n-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{n}}={}^{n}{{P}_{n-1}} \\
\end{align}$
Hence, proved.
(ii) ${}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n}{{P}_{r}}$ in the above equation. Then,
\[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\]
Now, we will use the formula from the equation (2) to write $n!=n\times \left( n-1 \right)!$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}\]
Now, we will write $\left( n-r \right)=\left( n-1-\left( r-1 \right) \right)$ in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
\end{align}\]
Now, we will use the formula from the equation (1) to write \[\dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!}={}^{n-1}{{P}_{r-1}}\] in the above equation. Then,
\[\begin{align}
& {}^{n}{{P}_{r}}=n\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\times {}^{n-1}{{P}_{r-1}} \\
& \Rightarrow {}^{n}{{P}_{r}}=n\cdot {}^{n-1}{{P}_{r-1}} \\
\end{align}\]
Hence, proved.
(iii) ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Now, we will use the formula from the equation (1) to simplify the term ${}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}$ in the above equation. Then,$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-1-r \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-1-\left( r-1 \right) \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left
( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $\left( n-r \right)!=\left( n-r \right)\times \left( n-r-1 \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+r\times \dfrac{\left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
\end{align}$
Now, we will take $\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}$ common from each term in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}+\dfrac{r}{\left( n-r \right)}\times \dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ 1+\dfrac{r}{\left( n-r \right)} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \left[ \dfrac{n-r+r}{n-r} \right] \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{\left( n-1 \right)!}{\left( n-r-1 \right)!}\times \dfrac{n}{\left( n-r \right)} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
\end{align}$
Now, we will use the formula from the equation (2) to write $n\times \left( n-1 \right)!=n!$ and $\left( n-r \right)\times \left( n-r-1 \right)!=\left( n-r \right)!$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-r \right)\times \left( n-r-1 \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
\end{align}$
Now, we will use the formula from the equation (1) to write $\dfrac{n!}{\left( n-r \right)!}={}^{n}{{P}_{r}}$ in the above equation. Then,
$\begin{align}
& {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}=\dfrac{n!}{\left( n-r \right)!} \\
& \Rightarrow {}^{n-1}{{P}_{r}}+r\cdot {}^{n-1}{{P}_{r-1}}={}^{n}{{P}_{r}} \\
\end{align}$
Hence, proved.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result quickly in a correct way. After that, we should apply formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ correctly in a proper sequence and solve without any mistake to prove the desired result easily. Moreover, we could have also proved the desired result by simplifying the term on the left-hand side and right-hand side separately using formulas like ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $r!=r\times \left( r-1 \right)!$ .
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The speed of revolution of earth in its orbit around class 10 social science CBSE

Why is the difference between the duration of day and class 10 social science CBSE

List out three methods of soil conservation

Explain series connections of Resistors and derive class 10 physics CBSE
