Out of ${\text{7}}$ consonants and ${\text{4}}$ vowels, how many words can be made each contain ${\text{3}}$ consonant and ${\text{2 }}$vowel?
Answer
Verified
471.3k+ views
Hint: - Number of ways of selecting ($ r$ numbers out of $n $ numbers) ${\text{ = }}{}^n{C_r}$
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State the laws of reflection of light
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Why does niobium have a d4s1 electron configuration class 11 chemistry CBSE